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Introduction

This book grew up from the lectures we held to the graduate students at the 
Bucharest University in the last years. Of course, the book goes beyond the 
lectures themselves, but we tried here to be as complete as possible. Implicitly 
we suppose that the reader is familiar with the basics of commutative algebra 
and though we include some of the main notions and results from Bruns and 
Vetter’ book [21], a reference in the area, we recommend the interested reader 
to take a look to this book. Actually, only the first two chapters of our book 
follow the line of investigation of Bruns and Vetter [21], the rest relying on the 
method started by Sturmfels [61].

The study of determinantal ideals, respectively of classical determinantal 
rings is an old topic of commutative algebra. As in most of the cases the 
theory evolved from algebraic geometry, but became soon an important topic 
of commutative algebra. Nowadays the held is still under investigation and 
there are many yet unsolved problems.

Let us give a brief description of our book.
Chapter 1 is mainly expository, with a few proofs, but here enters the scene 

the most important notions that will be used throughout the book. We start 
with the definition of graded algebras with straightening law on a poset (doset) 
over an arbitrary commutative ring. Then we split the exposition into three 
parts that correspond to the three types of matrices we are interested in. In 
part (G) we study generic matrices, in part (S) generic symmetric matrices, 
and in part (A) generic alternating matrices. This kind of presentation will be 
encountered throughout the book.

Chapter 2 deals with the computation of the divisor class group and canon- 
ical class of determinantal rings which correspond to 1-cogenerated ideals. Fi- 
nally we determine the Gorenstein rings among the rings under consideration.

Chapter 3 is the core of the entire book. We start by describing the com- 
binatorial algorithms INSERT and DELETE, and then the Knuth-Robinson- 
Schensted correspondence, KRS for short, between standard (Young) bita- 
bleaux and two-line arrays of positive integers of a certain type. The theorems 
of Schensted and Greene are reviewed in the next section. The theorem of 
Schensted [58] deals with the determination of the length of the longest in- 
creasing (decreasing) subsequence of a given sequence of integers. In fact, the

https://biblioteca-digitala.ro / https://unibuc.ro



iv Introduction

length of the longest increasing (resp. decreasing) subsequence of a given se- 
quence v is the length of the first row (resp. column) in the tableau INSERT(w). 
An interpretation of the rest of the shape of INSERT(v) is given by Greene’s 
theorem [43]. Next we describe a KRS type correspondence between stan­
dard monomials and ordinary monomials of a set of indeterminates, and at 
the end we use this in order to determine Grbbner bases for all three types of 
determinantal ideals.

In Chapter 4 we first recall some results on the primary decomposition of 
the powers (products) of determinantal ideals. It turns out that the primary 
decomposition depends on the characteristic of the field we are working over. 
Next we determine Grbbner bases for the powers of ideals of maximal minors 
(pfaffians) without reference to the characteristic. In the last section we exploit 
the theorems of Schensted and Greene in order to get Grbbner bases for the 
(symbolic) powers of determinantal ideals.

Chapter 5 opens a new perspective in the study of determinantal ideals 
based on the principie of deriving properties of ideals and algebras from their 
inițial counterparts. In fact, we associate to the inițial ideal of any determi­
nanta! ideal a shellable simplicial complex such that the corresponding residue 
class ring of the inițial ideal is the Stanley-Reisner ring of the complex. Then 
some of the combinatorial properties of simplicial complexes are interpreted in 
terms of families of lattice paths of a certain type, and thus the determination 
of the multiplicity, of the Hilbert series or of the a-invariant of determinantal 
rings become a counting paths matter.

All these techniques are brought together in Chapter 6 to contribute to the 
investigation of Rees algebras of determinantal (pfaffian) ideals and of algebras 
of minors (pfaffians). In the first section we show that the Rees algebras 
of determinantal (pfaffian) ideals and the algebras of minors (pfaffians) are 
Cohen-Macaulay and normal domains in non-exceptional characteristic. The 
next sections are devoted to the description of the divisor class group and 
the canonica! class of Rees algebras of determinantal (pfaffian) ideals and of 
algebras of minors (pfaffians). Finally we also determine the Gorenstein rings 
among the rings under consideration.

At the end we would like to thank all the people who, directly or indirectly, 
helped us to write this book.

Bucharest, 
May 2003

Cornel Baetica
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Chapter 1

Preliminaries

The straightening law of Doubilet, Rota and Stein [33], in the approach of De 
Concini, Eisenbud and Procesi [29], is an indispensable tool in the study of 
determinanta! rings. From the algebraic point of view, the determinanta! rings 
are graded algebras with straightening law, and this shall provide us some of 
their main properties.

Definition 1.0.1 Let >1 be a B-algebra and A C A a finite subset with a 
parțial order ^ , called a poset. Then >1 is a graded algebra with straightening 
law (for short ASL) on A over B  if the following conditions hold:

(Ho) A =  ® i>0 A  is  a  positively graded B-algebra such that A Q = B, ă 
consists of homogeneous elements of positive degree and generates A as 
a B-algebra.

(H J The products i i " - 5 u ,u  G N, ^  G A, such that ij ^  •■■ ^  i u are linearly 
independent over B. We caii them standard monomials.

(H2) (Straightening law) For all incomparable 5I ,52 £ △ the product 5]<52 has 
a representation

ii<52 = ^ ^ M >  AM 6 B, AM ^  0, p standard monomial ,

that satisfies the following condition: every standard monomial p con- 
tains a factor (  G A such that £ ^  <5i, C ^  ($2 (we allow that ^ ^  = 0, 
then the sum ^  X^p being empty).

Actually the standard monomials form a B-basis of A, the standard basis of 
A. The representation of an element of A as a linear combination of standard 
monomials is called its standard representation. The relations in (H2) will be 
referred to as the straightening relations.
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2 1. Preliminaries

The most interesting examples of ASLs are rings related to matrices and 
determinanta; see De Concini, Eisenbud and Procesi [30], Bruns and Vetter 
[21].

In order to apply the ASL theory to determinantal rings one has to know 
that these rings are indeed ASLs. This follows readily from the fact that their 
defining ideals have a distinguished System of generators with respect to the 
underlying poset. To be precise, let us consider A an ASL on a poset △ (over 
B), and △' C △ a poset ideal of △, i.e. A' contains all elements i  ^  y if y E A'. 
Set I  = A 'A  the ideal of A generated by △'.

Proposition 1.0.2 The residue class ring A /1 is a graded ASL on A  \  A' 
over B.

When A 1 is the poset ideal cogenerated by a subset Q of △, that is A! = 
K  e  △ : w /  (  for each u  6 O}, then the ideal I  = A 1 A is called the ideal 
cogenerated by Q. In particular, when |fi| = 1 the ideal cogenerated by Q is 
said to be a 1-cogenerated ideal.

An useful generalization of the notion of graded algebra with straightening 
law on a poset is that of graded algebra of straightening law on a doset. We 
define the underlying notions.

Definition 1.0.3 Let B  be a finite poset with order ^ . A subset D of H x H 
is a doset if D satisfies the following conditions:

(a) (a, a) E D for all a EL H \

(b) if (a, (3) E D, then a /3;

(c) if a /3 y  E H, then

(a, 7) E D <$=> (a,/3) E D and (/3,y) E D.

Definition 1.0.4 Let B be a ring, and let A =  0 i> o Ai be a positively graded 
B-algebra such that A Q =  B. Let D be a doset of a poset H, and suppose that 
D G A. Then A is a graded algebra with straightening law on doset D over B 
(for short DASL) if the following conditions are satisfied:

(Ho) D consists of homogeneous elements of positive degree in A.

(H J The products of the form («i, a 2) ■ • • ( ^ t - b ^ t ) ,  £ > 1, («21-1,»2j) € D, 
such that «i ^  a 2 ^  • • ■ ^  «2^-1 ^  &2k form a B-basis of A. We caii 
them standard monomials.

https://biblioteca-digitala.ro / https://unibuc.ro



1. Preliminaries 3

(H2) For (02i-i,02i) e D ,i  = l , . . . , l , \ e t  M = { ^ ^ 2 )  ^21-1^21)- More-
over, let

M  = ' ^ X N N, XN  E B, AN  ^  0, X standard monomial ,

be the representation of M  as a linear combination of standard mono- 
mials (standard representation). Let N  = (71,72) • • • (72/1-1,72h) be any 
of the standard monomials appearing on the right side of the equation. 
Then for all permutations o of the set {1 ,...,2 !}  one has that the se- 
quence (fla (i), ■ ■ ■, Papi)) is lexicographically greater or equal than the 
sequence (71, • • •, 72/0-

(H3) In the notation of (H2), suppose that there is a permutation a such that 
Pa(y) ^  "■ ^  Pa(2i)- The standard monomial

(^(1),^(2)) • • • (Â>(2l-l), @0(21))

must appear with coefficient ±1 in the standard representation of M.

(G) Let X  = (Xij) be an m x n matrix of indeterminates over a commutative 
ring B, for short a generic matrii, A(X) the set of all minors of X , and 
B[X] = B[Xij '. 1 < i , j  < n] the polynomial ring over B. Consider the set 
△ (X) ordered in the following way:

[ d i , , aj&i, ...,&t] ^  [ci,. . . ,  cs |d !,. . . ,  ds] if and only if t > s and a, < ĉ , 
bi < di for i = 1 ,. . . ,  s,

and let <5 G A(X), 5 = [di,. . . ,  d jb i,. . . ,  bt ], As usual, one denotes by 
[ai,. . . ,  d( |t>i, ...,t>(] the minor det (Xa,k;)i<ij<i- We define I(X , 6) to be the 
ideal generated by all minors which are not greater or equal than 5. Thus the 
ideal I(X ,6) is the ideal of B[X] cogenerated by 5. Denote by R(X,6) the 
residue class ring of B[X] with respect to the ideal I(X , 5) and by A(X, 5) the 
set of all minors which are greater or equal than 6.

In particular, if 5 = [1 ,..., t | l , . . . ,  t] then 1(X, 6) is the ideal / t+ 1 (X) gen­
erated by all the (t + l)-minors of X, and denote by R t + l(X) the analogous 
residue class ring. When B is a field we caii Bf + i(X) the classical determi- 
nantal ring.

Our investigation of the rings R(X, 6) is based on the knowledge of their 
combinatorial structure, see De Concini, Eisenbud and Procesi [30], [29], and 
on the methods developed by Bruns and Vetter in the fundamental book [21], 
In this approach one considers all the minors of X as generators of the B- 
algebra B[X], and not only 1-minors Xij. So we may interpret the products 
of minors as “monomials”, but the price to be paid is that the computations 
may become tedious. Therefore one has to choose a proper subset of all these
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4 1. Preliminaries

“monomials” as a B-basis: we will see that the standard monomials form a 
B-basis, and the straightening law will help us to express an arbitrary product 
of minors as a linear combination of standard monomials.

Let g  =  <5] • • '5U be a monomial, i.e. a product of minors. We can always 
assume that the sizes of minors 5,, denoted by |5i|, are in non-increasing order 
|^i| > • • • > |5U |. By convention, the value of the empty minor [ | ] is 1. The 
shape \p\ of p is the sequence ( |5 i|,. . . ,  |5U|). Moreover, the monomial p is said 
to be standard if and only if ii ^  •• • ^  5U.

The combinatorial structure of B[X] with respect to products of minors is 
clarified by the following theorem; see De Concini, Eisenbud and Procesi [30, 
pg.51], [29] or Bruns and Vetter [21, Chapter 4].

Theorem 1.0.5 The ring B[X] is a graded algebra with straightening law on 
△ (X) over B, that is:
(a) The standard monomials form a B-basis of B[X\.
(b) The product of two minors 61,6? G △(%) such that 5152 is not a standard 
monomial has a representation

5152 =  ^ 2  ^ iTli’ ^i e  B, ^ ^  °>

where ^pli 13 a  standard monomial and & ^  5i, 52 ^  Pi (we allow here that rjt 
is the empty minor).
(c) The standard representation of an arbitrary monomial p can be found by 
successive applications of the straightening relations in (b).

Some remarks are in order here:

Remark 1.0.6 (a) Usually the proof of Theorem 1.0.5 goes by passing to 
the subalgebra B[F(X)] generated by the set F(X) of maximal minors of X. 
The advantage of considering B[f(X)] instead of B[X] stands on the fact that 
the maximal minors satisfy the famous Pliicker relations; see, for instance, 
Bruns and Vetter [21, Lemma (4.4)]. Notice that the Pliicker relations are 
homogeneous of degree 2 (the maximal minors are considered in B[F(X)] as 
having degree 1). Therefore there are exactly two factors (i and T]i in each 
term on the right side of the equation

1̂̂ 2 5 ^ ^ ' ^ ' ’

with 5i, 52 maximal minors. But the straightening law in B[X] is a specializa- 
tion of that in B[F(X')], where X ' is a generic matrix that contains X as a 
submatrix. This yields a justification for part (b) of the Theorem 1.0.5.

(b) When m < n and B is a field, the algebra B[F(X)] is the homoge­
neous coordinate ring of the Grassmann variety of the m-dimensional vector 
subspaces of B n .
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1. Preliminaries 5

As an immediate consequence of Theorem 1.0.5 and Proposition 1.0.2 we 
get:

Corollary 1.0.7 The ring R(X,6) is a graded algebra with straightening law 
on A(X, 5) over B.

The sets △(X) and △(X, 6) are distributive lattices. Now by Bruns and 
Vetter [21, Theorem (5.14)] we can immediately conclude:

Proposition 1.0.8 I f B  is a Cohen-Macaulay ring, then R (X ,6) is Cohen- 
Macaulay.

The following proposition shows how to compute the dimension of the ring 
R{X, i), where 5 =  [o i,..., a( |6i, ■ ■ ■ ,bt] G A(X).

Proposition 1.0.9 We have d im ^ țX ,5) = dim B + {m + n + 1)/ — ^ = 1 (ai + 
bi). In particular, the classical determinantal ring R t + i(X) is Cohen-Macaulay 
of dimension (n + m — t)t.

(S) Let X  = (Xij) be an n x n symmetric matrix of indeterminates over a 
commutative ring B  i.e. Xij = Xji for all i > j ,  for short a generic symmetric 
matrix, and B[X] = B[Xij '■ 1 < i < j  < n] the polynomial ring over B. Let 
H  be the set of the non-empty subsets of {1 ,... ,n} and a = {Qb  . . .  ,a t } € H 
with oj < • • ■ < a f . One defines I(X , a) as being the ideal of B[X] generated 
by all the z-minors of the first a , -  1 rows of X , for i = 1 , . . . ,  t, and by all 
(t + l)-minors of X . Denote by R (X ,a )  the residue class ring of B[X] with 
respect to the ideal I(X ,a ).

In particular, if a  = { 1 ,..., £} then I(X ,a )  is the ideal I t+ i(X ) generated 
by all the (/ + l)-minors of X , and denote by S1+i(X) the analogous residue 
class ring. When B is a field we caii S( + i(X) the classical ring of symmetric 
minors.

There is also a standard monomial approach to the structure of R (X ,a), 
in which DASLs replace ASLs. On the set H  we define the following parțial 
order:

a = {«i, . . . ,  at } ^  b = {bi,. . .  ,bs } <=> t > s and ai < bi for i = 1 ,. . . ,  s.

Since X is a symmetric matrix, it is obvious that we have [a i,. . . ,  a j ^ , . . . ,  bf] 
= [&i,. . . ,  6t|ai,. . . ,  a t]. Let M = Mi ■ ■ ■ Mu be a monomial, i.e. a product 
of minors. We can assume that the sizes of minors Mi, denoted by |Mj|, are 
in non-increasing order \Mi\ > ••• > |MU |. By convention, the value of the 
empty minor [ | ] is 1. The shape \M\ of M  is the sequence (IA /J,. . . ,  |MU|). A 
minor [di,. . . ,  at \bi,. . . , 6(] of X is a doset minor if {di,. . . ,  at } {i^,. . . ,  bt } 
in H. Let us denote by A(X) the set of all doset minors of X. Let ai =
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6 1. Preliminaries

{«11, • ■ •, oit,}, h  — {b n ,. . . ,  ba, }>■••>“) -  {“si> «st,}, bs — {6ji,. . . ,  6J ( )] 
be elements in H  and suppose that [a1 |6 ]],...,[a s |is ] G △(X). The prod­
uct M  = [ai\bi] ■ • • [as \bs] is a standard monomial if b, < aj+ i in H  for all 
i = 1 , . . . ,  s — 1. For a standard monomial M, one denotes by min (M) the 
minimum of its factors [ai|6]].

The combinatoria! structure of B[X] with respect to products of minors is 
described in the following theorem of De Concini, Eisenbud and Procesi [30, 
Pg-82].

Theorem 1.0.10 The ring B[X] is a doset algebra on △(%) over B, that is: 
(a) The standard monomials form a B-basis of B[X].
(b) (Straightening law) Let Mi = [ai b  . . . ,  afr J&ii,. . . ,  6i rJ € A(X) with i = 
1 , . . . ,  s and N  [cu, • • •, Cisj [du ,. . . ,  d]S1] * * * [cri,. . . ,  CrsT l^rb • ■ • > ^rsr ] be one 
of the standard monomials which appear in the (unique) representation of 
the product Mi • • • M s as a linear combination of standard monomials. If 
one considers ct — {cu, • • •, Cis,}; dj — {du i • • • i d^s,), Uî — [o,i, . . . ,  a^,) 
and bi = {ba,. . .  ,biT i}, then in the lexicographic order on H, the sequence 
C i,di,. . .  ,cT,d r is less than or equal to every sequence obtained by permuting 
the elements a i,b i,. . .  ,a s ,bs .

The following lemma is a direct consequence of De Concini and Procesi 
[28, Lemma 5.2]:

Lemma 1.0.11 Every t-minor M  = [a],. . . ,  a ( |b i,. . . ,  6t] can be written as 
a linear combination of doset t-minors. Furthermore, for any t-doset minor 
[ci,. . . ,  ct \d i,. . .  ,d t] which appears in the representation of M we have c, < a, 
for all i = 1,.. . ,t.

Set X (X ,a )  =  {[a|6] £ A(X) : a  ^  a}. By Lemma 1.0.11 one deduces 
that the ideal I (X ,a )  is generated by the doset minors in Q(X, a) = △ (%) \ 
△ (X, a), that is, the ideal I(X , a) is the ideal cogenerated by a. Note that the 
set Q(X, or) is the set of all the doset minors whose sequence of row indices is 
not greater or equal than a. Using the straightening law we get the following:

Corollary 1.0.12 The set of all standard monomials M such that min (AL) G 
Q(X, a) is a B-basis of I (X ,a ) , and the set of the residue class of all stan­
dard monomials M  such that min (M) G △(X, a) forms a B-basis of the ring 
R {X ,a).

Kutz [53] has shown the following:

Proposition 1.0.13 (a) The dimension of the ring R (X ,a ) equals dimB + 
(n + l)t -  2 = i Q i .
(b) If B is a Cohen-Macaulay ring, then the ring R(X, a) is Cohen-Macaulay. 
In particular, the classical ring of symmetric minors S t + i(X) is a Cohen- 
Macaulay ring of dimension t(t +  l) /2  + (n — t)t.
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1. Preliminaries 7

A proof of Proposition 1.0.13 will be given later in Chapter 5.

(A) Let X  = (Xij) be an n x n alternating matrix of indeterminates over a 
commutative ring B, i.e. Xij = —Xji for all i > j  and X u  = 0, for short a 
generic alternating matrix, and B[X] = B[Xij : 1 < i < j  < n] the polynomial 
ring over B. It is well known that det(X ) = 0 when n is odd, while for n 
even there exists an element pf(X) in B[X], called the pfaffian of X , such 
that det(X) = pf(X)2 . For more details about pfaffians we refer the reader 
to Bourbaki [11], Chapter IX, § 5, no. 2. Let n(X ) be the set of all pfaffians 
of X , and consider II(X) ordered in the following way:

[ai,. . . ,  a2 t] ^  [bi,. . . ,  b2s] if and only if t > s and a; < bt for i = 1 , . . . ,  2s,

and let TT G I1(X), TT = [ai,. . . ,  a2 t]. One defines /(X , TT) to be the ideal 
generated by all pfaffians which are not greater or equal than 7T. The ideal 
I(X , %) is called the ideal cogenerated by 7r. Denote by R{X, %) the residue 
class ring of B[X] with respect to the ideal I ^ X , ^  and by II(X, TT) the set of 
all pfaffians which are greater or equal than 7r.

In particular, if 7r = [1 ,..., 2t] then I(X , TT) is the ideal / t + i(X) generated 
by all the (21 + 2)-pfaffians of X, and denote by Ff + i(X) the analogous residue 
class ring. The ideals I t+ 1(X) are called pfaffian ideals and the rings Ft + i(X) 
the classical ring of pfaffians, provided B is a field.

Let y = 7Ti"’7ru b ea  monomial, i.e. a product of pfaffians. We can always 
assume that the sizes of pfaffians TT„ denoted by |TTJ, are in non-increasing 
order 1^1 > •••>  |TTU |. By convention, the value of the empty pfaffian [ ] is 1. 
The shape \v\ of v is the sequence (|TTI | , . . . ,  |TTU |). Moreover, the monomial v is 
said to be standard if and only if 7Ti ^  • • • ^  7ru . The combinatorial structure of 
B[X] with respect to products of pfaffians is settled by the following theorem; 
see De Concini and Procesi [28, Theorem 6.5] or De Concini, Eisenbud and 
Procesi [30, pg.53].

Theorem 1.0.14 The ring B[X\ is a graded algebra with straightening law 
on II(X) over B, that is:
(a) The standard monomials form a B-basis of B[X].
(b) The product of two pfaffians 7Ti, %2 G II(X) such that 7TI7T2 is not a standard 
monomial has a representation

7T17T2 =  ^ \ ^ t ,  Aj G B, Ă; ^  0,

where ^r^ is a standard monomial and TT2 -< T]i (we allow here that r]l
is the empty pfaffian).
(c) The standard representation of an arbitrary monomial p can be found by 
successive applications of the straightening relations in (b).
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8 1. Preliminaries

The straighten of two pfaffians relies on the following result of De Concini 
and Procesi [28, Lemma 6.1]:

Lemma 1.0.15 We have

[ai,. . . ,  a2(][&i,. . . ,  &2S] — ^ J a i ,  • • •, a,_i, 6i,Oi+ i , . . . ,  a2 t][ai, b2 ,. . . , b2s] = 
E j ^ f - ^ ’” 1^ ’ • • • >bj-i,bj+ i , . . . ,  b2s][bj, bi, ax,. . . ,  a2 t].

Note that Lemma 1.0.15 yields an argument for part (b) of Theorem 1.0.14, 
as long as any straightening relation can be obtained by iterated use of Lemma 
1.0.15.

As a consequence of Theorem 1.0.14 and Proposition 1.0.2 we get:

Corollary 1.0.16 The ring R(X ,if) is a graded algebra with straightening law 
on II(X, 7r) over B.

The sets II(X) and n(X , %) are distributive lattices. By virtue of Bruns 
and Vetter [21, Theorem (5.14)] we can immediately conclude:

Proposition 1.0.17 I f B is a Cohen-Macaulay ring, then R(X,7r) is Cohen- 
Macaulay.

In the next proposition we compute the dimension of the ring R(X, 7r) with 
7T =  [a i ,. . . ,a 2 t] e n(X).

Proposition 1.0.18 We have dim R(X, 7r) = dim B + 2nt — E i i i  a i- ^n  par­
ticular, the classical ring of pfaffians Pt+ i(X ) is Cohen-Macaulay of dimension 
2nt -  (2t + l)t.

Proof. Since the poset n(X , %) is a distributive lattice, it is a wonderful poset, 
so that any two maximal chains have the same length. The rank of n(X , 7r) 
is the length of every maximal chain in II (X) which starts from 7r. We can 
find the following saturated chain [fli,..., au-i, a2 t] < [« !,..., a2 t_i,a 2t + 1] < 
• • • < [al ț . . . ,  fl2t-i,n] < • • • < [ai,. . . ,  n — 1, n] < [a1 ; . . . ,  a2 t_2]. By induction 
on t we get that rankII(X, 7r) =  2n — (a2t—i + a2 t) + 2n(t — 1) -  E ' i f  — 1, 
hence rank I1(X, 7r) = 2nt — ^JiLi a i — 1- As R(X, JT) is an ASL over B  we can 
compute its dimension by using Bruns and Vetter[21, Prop. (5.10)], so that 
dim R(X, 7r) = dim B + rank II(X,7r) + 1. □

Recall that a finitely generated module M  over a Noetherian ring R  is 
called perfect if grade(Af) = projdim (Af). In particular, an ideal I  is perfect 
if grade (Z) = projdim (R/T). We now get that the ideals Z(X, ÎT), TT € II(X), 
are perfect ideals.
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1. Preliminaries 9

Proposition 1.0.19 I f B is a Noetherian ring, then the ideal I(X,7r) is per­
fect of grade n(n — l)/2  — 2nt +  £ 2 ^  a -,

Proof. To begin with let us consider B = Z and show that the ideal I(X , %) is 
perfect of grade n(n — l)/2  — 2nt + ^ j  a,. As R(X, TT) is an ASL on n(X, TT) 
over Z, it is a free Z-module. Consequently, it is enough to show that R(X, TT) is 
a perfect Zp [X]-module for all primes p G Z. We have that R(X, TT) is a Cohen- 
Macaulay Zp [X]-module (see Proposition 1.0.17), projdimzp[x](B(X, TT)) is fi­
nite, and R(X, TT) has no non-trivial idempotents (the idempotents of R(X, TT) 
must be of degree zero). Applying Bruns and Vetter [21, Prop. (16.19)] we 
get that R(X,-nf is a perfect Zp [X]-module of grade equal to grade/(X, TT) = 
height/(X, 7r) = dimZp [X] -  dimB(X, TT) = n(n — l)/2  — 2nt + ^ ^  a^ □
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Chapter 2

Divisor class group and 
canonical class of determinantal 
rings

2.1 Integrity and normality
(G) Bruns and Vetter [21, Theorem (6.3)] have proved the following:

Theorem 2.1.1 Let B  be a (normal) domain. Then the ring R(X,6) is a 
(normal) domain.

Theorem 2.1.1 has an obvious consequence.

Corollary 2.1.2 Let B be an integral domain, and Q C A(X) a poset ideal. 
Then the minimal prime ideals of ^IR(X, (5) are the ideals

I(x ,Q  = I { X ,0 /I (X ,6 ) ,

C running through the minimal elements of X (X ) \  Q, and QR(X,â) is their 
intersection.

(S) We prove that R(X, a) is a (normal) domain as long as B  is a (normal) 
domain. In order to do this, we need the following lemma which describes the 
localization of R(X, a) with respect to a  within the total ring of quotients of 
R (X ,a). The proof will follow closely the argument of [21, Lemma (6.4)].

Let a € H, a = [ a i , . . . ,  a t ), and denote by f  the residue class of the minor 
[a|o] in/?(X ,a). C onsideri = {[a^ctj] '■ 1 < i < j  < t}u{[a|/7] G A(X, a) : (3 
differs from a  in exactly one index} and denote by B[$] the B-subalgebra of 
R (X ,a)  generated by the elements in set ’P.

https://biblioteca-digitala.ro / https://unibuc.ro



2.1. Integrity and normality 11

Lemma 2.1.3 The set ^  is algebraically independent over B  and

n (x 1. ) i / - i i = B |*n /- | |,

Thus R (X ,a )[f~ l ] is isomorphic to B[TX, . . . ^ d J tC 1], where £ G B[Ti,. . .  ,Td] 
and d = dimB(X, d) — dimB. I f B is an integral domain, then £ is a prime 
element.

Proof. First we prove that R(X, o )[ / - 1 ] = B j ^ f / - 1 ]. It is clear that B [^][/- 1 ] 
is contained in B(X, a ) [ /^ 1]. The other inclusion will be done if we show that 
[u|w] G B [^][/- 1 ] for all [u|v] G △ (%, d). If u (or v) is in { d i , . . . ,d t }, then 
we get [u, d i , . . . ,  d t |u, d i , . . . ,  d f] = 0. Expanding the minor with respect to 
the first row we get

t

[u\v]f =  ^ ( - l ^ + ^ u l d j ] ^ ! , . . . ,  d f |v ,  d i , . . . ,  â j , .. . , d f ], 

7 =  1

where w means that the index w is missing. Because [u|dj] G $  and

[ d 1 5 . . .  , d f |v ,  d i , . .  . ,  d j , . .  . ,  d t ] G $

(it differs from d in exactly one index) or [d i,. . . ,  d t |v, d i , . . . ,  â j , . . . ,  d t] = 
0 in R (X ,a), we conclude that [U |D] G B[\P][/—']. The general case is an 
immediate consequence of the relation above.

Since /  is the only minimal element of A(X, d), it is a non zero-divisor in 
R (X ,a), therefore

dim B[tf] = dim B ^ / ”1] = dim R(X, d ) ^ 1] = dim R(X, a).

Note that an element £ G △(A’, d) which differs from d in exactly one index 
must be a t-minor, so that |^ | = t(t + 1) + E '- J n  — a, — (t — i)) = t(n+  1) — 
E L  = dim R(X, a) — dim B. Consequently, when B is a field the set ^  is 
algebraically independent over B. The general case proceeds as in the proof 
of Lemma (6.1) in [21].

When B  is an integral domain, the element /  is a prime element of the 
ring B[(Xa ja ?)!<!<_,<(] because it is the determinant of the symmetric matrix 
(^a,aj)i<t<j<t (if we use Proposition 2.1.9, it is immediately that the deter­
minant of a symmetric matrix is a prime element). Therefore /  is a prime 
element of B[^], and the isomorphism above maps f  in (. We get that £ is a 
prime element of B[Ti, . . .  ,Td\. □

Corollary 2.1.4 Let B be a domain. Then the ring R (X ,a ) is a domain.
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12 2. Divisor class group and canonical class

Proof. The localization R (X ,a )[ f  '] is a domain, by Lemma 2.1.3, and /  is a 
non zero-divisor. Therefore R(X , a) is a domain, too. □

In order to prove normality of the ring R(X, a) we shall use Serre’s nor- 
mality criterion [37, Theorem 4.1]. Since it is Cohen-Macaulay 1.0.13, it is 
enough to show that R (X ,a )  satisfies the Serre’s condition (R J. By 2.1.3, 
any localization of R(X, a) to a prime which does not contain f  is regular, as 
being a localization of a polynomial ring. Consequently, we have to investigate 
the localizations of R (X ,a )  to minimal prime ideals of f .

First let us describe the minimal prime ideals of f .  Set U = {fi e  H : fi > 
a ] , and denote by J  the set of the minimal elements in U, that is J  is the 
set of the upper neighbours of a  in H. One considers J  = 0 if a  = {n}, and 
/(X , 0) = (Xij : l  < i<  j  < n). For fi E J, one has /(X ,a )  C I{X ,fi).

Lemma 2.1.5 One has Qpe J  I(X , fi) = ([a|7] : [«I7] € △( / ,« ) )  + I{X ,a )

Proof. It is obvious that the right side is contained in the left side. Let 
p € ([a|7] : [0(7] G △(X, a)) + I(X ,a ). One may assume that /z is a standard 
monomial with min (^) = [7|i]. Since 7 ^  (3 for all fi E J, one deduces that 
7 =  a  or 7 a  and the proof is done. □

Lemma 2.1.6 The ideals I(x ,fi) = I (X ,f i ) /I (X ,a )  of R (X , a), with fi E J , 
are the minimal prime ideals of (f).

Proof. Note that the ideals I(x,{3}, fi E J, are distinct. Furthermore, we have

(n< £ J / f c W c ( / ) ,
By Lemma 2.1.5, it is enough to show that for all 7, 5 > a  we have [a|7][a|/î] E 
(/). Let P  a standard monomial that appear in the standard representation of 
[a17] [a|/7], and set min (1/) = [(J^]. The sequence ( b (2 is less than or equal 
to the sequence a, a, hence v =  [a|a]i7 o ry  = 0 in  R (X ,a ). □

We want now to describe the set J  of all the upper neighbours of a. The 
standard way to do this is to break a  into blocks of consecutive integers

® [A > • ■ • > fir] > fii — (̂ fc,_ 1 + 1 > • • • , ®kj) >

where k0 = Q and kr = t. Each fii is followed by a gap

Xi = (o^ + l , . . . , a i i+ 1  -  1),

the sequence of integers properly between the last element of fii and the first 
element of fii+ i, and y r  =  {at + 1 ,... ,n) or Xr = 0 if ô t = n. For every 
i = 1 , . . . ,  r we get an upper neighbour £  of a  by replacing a ^  with a^  + 1,
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2.1. Integrity and normality 13

when i < r or i = r and a t < n. If a t = n, then £r  is obtained from a  by 
deleting a t .

The following lemma, borrowed from [49, Lemma (1.1)], will allow us in- 
ductively proofs.

Lemma 2.1.7 Let X  be a symmetric matrix of size (n -1 )  x (n—1). Consider 
the K-algebras homomorphism

: ^ [ X ] ^ 1] - 4  X[X][Xn , . . .  .^ m W ? ] ,

defined by the assignment ^ (X ^ )  = X ^  for all j  =  1 ,.. .  ,n , and ip(Xjj) = 
X i-ij-i  + X uX ^jX fi for all 1 < i < j  < n. Then ip is an isomorphism.

Let us denote by [... | .. -]x, and by [• • • | • • -]x the minors of X  and X , 
respectively. Let p =  [a1 ; . . . ,  a s |b i,. . . ,  6s]x G A(X). Since the matrix 
(Ă hÂ ijX f^xijX n has the rank 1, and using the linearity of the determi­
nant with respect to the rows one obtains

s

< W  = [fl] -  1 ,...,O , -  l|b] -  1,.. ,,6 S -  1]^ + £  ( - ^ " X ^ X ^ X n 1^ , 
u,v=l

_  ____  (2.1)
where puv = [di -  1 , . . . ,  au -  1 ,. . . ,  as -  l|6i -  1 , . . . ,  bv -  1 ,. . . ,  bs -  1]^.

In particular one gets

^ ([l,a 2 ,- • • ,a s |l,&2 , . . .,&s ]x) = X n [a2 - 1 , . . , ,a s -l|& 2 - l , . . .  ,bs - l ] ^ .  (2.2)

If «i = 1, then Xn ^ /(X , a), and using (2.1) and (2.2) one shows 
that the ideal ^{I^X^af} is the extension of the ideal I (X ,a )  to the ring 
X[X][Xn,. . . ,  X^HXy1], where â  = {a2 — 1 ,. . . ,  a f — 1}. Thus we get an 
isomorphism

^  : R (X , a ) ^ 1] ^ (X , â)[X n , . . . ,  X ^ X / / ] ,  (2.3)

where i n  denotes the residue class of Xn in R (X ,a). If one denotes by f  the 
residue class in R (X ,a )  of the minor [â|â], by £ the upper neighbours of â, 
and by I (x ,ți)  the corresponding minimal prime ideals of f ,  then by (2.2) we 
have ip(f) = X n /. Moreover, if a 2 = 2, then

W (X ,  G)) = I(x, â )R (X ,ă )[X u , . . . , X ^ X / / ] ,  (2.4)

for all i =  1 , . . . ,  r, and, if a 2 > 2, then
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14 2. Divisor class group and canonical class

O ) = I(x, Qi-i)R{X, ă ) [ X „ , X ^ X H 1], (2.5)

for all z = 1 , . . . ,  r, while I(x, ți)R (X , a ) [ iy ]  = R(X, a )^ n ] -

Set R  = R(X, a), and Pi = I(x,/3i). We are ready now to prove that the 
localizations R Pi are discrete valuation rings (for short DVR).

Lemma 2.1.8 (a) R Pi is a regular ring for all i = 1 ,... ,r. Hence R Pi is a 
DVR, and let Vi be the corresponding valuation.
(b) I f i < r, or if i = r and a t < n, then Vi(f) =  2. I f a t = n, then vr (f) = 1.

Proof. The proof goes by induction on n. For n =  2, a  is one of the following 
{1}, {2}, {1,2}.

If a  = {1}, then I (X ,a )  = (Xn X22 -  X ^), f  = i l b  and Pi = (xu , x 12). 
We get that PiRp, = (X I2)R P1, and f  = x ^ x ^ ,  therefore R P} is regular and 
f i ( / )  =  2.

If a  = {2}, or a  = {1,2}, then I(X ,a )  = (X n ,X i2), f  = x 22, and 
Px = (z22), or I(X ,a )  =  (0), f  = (Xn X22 -  X ^), and Pr =  (Xn X22 -  X^). 
In this case all the assertions are trivial.

Let us suppose now n > 2. If a i > 1, Then R (X ,a )  = R(T, 7), where 
L  is an (n + 1 -  a i) x (n +  1 -  a i) symmetric matrix of indeterminates and 
7 = {1, a 2 + 1 — a b  . . . ,  a t +  1 — ai}. By induction, we may assume a i = 1. If 
a 2 =  2, then R Pi is localization of R fi^1] for all z = 1 , . . . ,  r. Set R = R (X , â), 
and p  = I(x ,^ i). From (2.3) and (2.4) we get that R Pi is isomorphic to a 
localization of R p [ X n ,. . . ,  X l n ]. It is a regular ring by induction hypothesis, 
hence R Pi is regular. Since X n  is an unit, we have Vi(f) = vx(f}, where vt is 
the valuation on R p . Again by induction vr ( f)  = 1 if a t — 1 = n — 1, and 
£;(/) = 2 in the other cases. If a 2 > 2 and z > 1, one proceeds as above using 
(2.3) and (2.5).

It remains the case i =  1 and a 2 > 2. By definition Pi = ( i n , . . .  , i i n ). 
Since all the 2-minors of the first two rows of X are 0 in R, we get xn = 
^i2^i2^22 in Rpa and P{Rp1 = (x i 2 )RP l . Therefore R Pl is regular. In R P1 
we have that f  = det (itj)i<ij<Q( =  [£I |CI]£22

2Z2
2 . As the element [CI |£I]I 22

2 is 
invertible in R P1, one gets fi (/) = 2. □

An immediate application of Serre’s normality criterion [37, Theorem 4.1] 
gives us the following

Theorem 2.1.9 Let B be a normal domain. Then the ring R (X ,a ) is also a 
normal domain.

Proof. Since R (X ,a )  is Cohen-Macaulay 1.0.13, it is enough to show that 
R(X, a) satisfies the Serre’s condition (R J. By 2.1.3, any localization of
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2.1. Integrity and normality 15

R(X, a) to a prime which does not contain /  is a localization of a polynomial 
ring, hence a regular ring. By Lemma 2.1.8(a), every localization of R(X, a) to 
a minimal prime ideal of f  is regular. Consequently the ring R(X, a) satisfies 
the Serre’s condition (B J. □

(A) In this part, as a normality criterion we shall use the following

Lemma 2.1.10 Let S  be a Noetherian ring, and x € S  a non zero-divisor. 
Assume S [r - 1 ] is a normal domain, and S/(x) is reduced. Then S is normal.

Proof. See [19, Exercise 2.2.33] or [21, Lemma (16.24)]. □

In order to prove that R(X, %) is a (normal) domain as long as B  is a 
(normal) domain, we need the following lemma which describes the localization 
of R(X, 7r) with respect to r: within the total ring of quotients of R(X, 7r). Our 
argument is a suitable modification of the argument of [21, Lemma (6.4)].

Let 7T € II(X), 7F = [ a i , . . . ,a 2 t] £ n(X ), $  = {[a^j] :1  < i < j  < 
2t} U{( G II(X, 7r) : (  differs from 7r in exactly one index} and denote by B[$] 
the B-subalgebra of R ^ X ,^  generated by the elements in set 4'.

Lemma 2.1.11 The set ^  is algebraically independent over B and

R ^ X , ^ - 1] =  BM[7r-'].

Thus R(X, 7r)[TT—1 ] is isomorphic to B[Tl t . . . ,  îd jK '1], where £ 6 B[T^,. . . ,  Tj] 
and d = dimfi(X,7r) — dimB. I f B is an integral domain, then ț  is a prime 
element.

Proof. At the beginning we prove that B(X, TT̂ TT- 1 ] = B[^][TT_ 1 ]. It is clear 
that Bf^]]^- 1 ] is contained in B(X,îr)[7r_ 1 ]. The other inclusion will be done 
if we show that [uv] G B ^ ^ TT- '] for all [uv] G I l ț / j ) .  If u (or u) is in 
{a1 5 . . . ,  a2 (], then [u, u, a1 ; . . . ,  a21] = 0. Expanding the pfaffian with respect 
to the first two rows we get

2t

[UV]TT = ^ 2 ( - l ) j + 1 [uaj][v, al t . . . ,  â j ,. . . ,  a2 t], 
3=1

where w means that the index w is missing. Because [uaj] G ^  and

[v,ai , . . . , â j , . . . , a 2 t\ G ^

(it differs from 7r in exactly one index) or [v, a i , . . . ,  â j , . . . ,  a2 t] = 0 in R(X, 7r), 
we conclude that [uv] G B ^ ^ TT- 1 ]. The general case is an immediate conse- 
quence of the relation above.
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16 2. Divisor class group and canonical class

Since TT is the only minimal element of n(X,7r), it is not a zero-divisor in 
fl(X,7r), therefore

dimB[^] = dimBf^fTr- 1 ] =dimB(X,7r)[7r- 1 ] = dim R(X, TT).

Note that an element £ G n(X , 7r) which differs from ÎT in exactly one index 
must be a 2t-pfaffian, so that |$ | = t(2t — 1) + E L ( n  — di — (2t — if) = 
2nt — ^ -ijO ; =  dimB(X,7r) — dimB. Consequently, when B is a field the 
set ^  is algebraically independent over B. The general case proceeds as in the 
proof of Lemma (6.1) in [21],

When B  is an integral domain, the element % is a prime element of the 
ring B[(XOia>)1<i< J<2t] because it is the pfaffian of the antisymmetric matrix 
(^a iaj )i<i<j<2t (if w ® use 2.1.12, it is immediately that the pfaffian of an an­
tisymmetric matrix of even dimension is a prime element). Therefore 7r is a 
prime element of B[^], and taking into account that the isomorphism above 
maps % in £ we get that £ is a prime element of B \T \,. . . ,  T^]. □

Theorem 2.1.12 Let B be a (normal) domain. Then the ring R (X ,TT) is a 
(normal) domain.

Proof. By 2.1.11, the ring R(X, TT) ^ " 1] is a domain. As we already observed, TT 
is a non zero-divisor in R(X, TT), therefore R(X, TT) is contained in R(X, 7r)[TF̂ ’]. 
For normal B  the ring B f^ ]^ - 1 ] is also normal, hence B(X, 7r)[7r- 1 ] is normal. 
As the ring R(X,7r)/7rR(X,7r) is a graded ASL over a domain, then by [21, 
Prop. (5.7)] it is reduced and we can apply 2.1.10. □

Corollary 2.1.13 Let B be an integral domain, and Q C n(X , %) a poset 
ideal. Then the minimal prime ideals of QR(X, %) are the ideals

/(x,C) = /(X ,0 /Z (X ,T ),

£ running through the minimal elements of Fi(X,7r)\Q, and QR(X,7r) is their 
intersection.

Proof. Let £ be a minimal element of 7r. The factor ring R (X ,TT) /I (X ,() 
is isomorphic to R (X ,()  and this is a domain by 2.1.12, so that I ( x , ț )  is a 
prime ideal. Because Q is a poset ideal, we get that Q U (H(X) \  Il(X,7r)) = 
Q (II(X )\n(X , £)). Now we get that $IR(X, 7r) = Q I(x, £), £ running through 
the minimal elements of II(X, TT) \  Q. From this equation it follows that these 
are all the minimal prime ideals of i7R(X, TT). □
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2.2 Divisor class group of determinant al rings
(G) The divisor class group Cl(fl(X ,i)) of determinantal rings R(X,6), was 
determined by Bruns and Vetter [21, Theorem (8.3)].

Theorem 2.2.1 Let B  be a Noetherian normal domain, X  anm  x n generic 
matrix over B, and 6 = [a^,. . . , a t |6],. . . ,  6t ] G A(X). Then the divisor class 
group of R (X, 5) is given by

C1(B) ® Z“+u if at = m or bt = n,
C1(B) © z u + ”+1 otherwise,C1(B(X,5)) =

where u+1, resp. v + 1 represents the number of blocks (of consecutive integers) 
for the row part [di,. . . ,  at], resp. column part [bi,. . .  ,bt].

As a by-product we get that the ring R(X , 6) is factorial if and only if it is 
a polynomial ring over B.

Corollary 2.2.2 The ring R(X, â) is factorial if and only if B is factorial 
and

6 = [a i,. . . ,  a} + t — l | n - 1 + 1 ,.. . ,  n] or 6 = [m — t + 1 , . . . ,  m |6i,. . . ,  b̂  + t — 1].

(S) For the computation of the divisor class group of R(X, cu) we use the clas- 
sical theorem of Nagata which relates the divisor class group of a Noetherian 
normal domain and the divisor class group of its rings of quotients (see [37, 
§7] or [7, §4.5]).

Theorem 2.2.3 Let B  be a Noetherian normal domain, X  an n x n generic 
symmetric matrix over B, and a = { « i,. . . ,  a (} G H . The divisor class group 
of R (X ,a ) is generated by the classes of the prime ideals I(x ,ți) , 1 < i < r, 
the only relation between them is £ ] =1 Vi(f)c\(I(x,Ci)) = 0, and

C1(B) ® Zr —1 ® Z2 if a t < n C 1 (B (A ») = C l ^ S Z ^ 1 i f a t = n.

Proof. One can first assume that B is a field. By Nagata’s theorem and Lemma 
2.1.3 we deduce that C1(B(X, a)) is generated by the classes of the minimal 
prime ideals of f ,  that is c l(/(i,( ,)), 1 < i < r. Since the ring B(X, a )[ /^ 1] 
arises from a polynomial ring by inversion of a prime element (see 2.1.3), we 
get that the units of B(X, o )[ / - 1 ] are elements of the form a f m , with a E K, 
a 7̂  0 and m E %. X similar argument to [21, pg.94] shows that the only 
relation between cl(/(x, (1 )),..., c l(f(i, O)) is Z L i  ^i(/)cl(/(z, O ) =  0- The 
description of the divisor class group of R (X ,a )  follows readily from 2.1.8(b). 
□

We can now determine when the ring R(X, a) is factorial.

https://biblioteca-digitala.ro / https://unibuc.ro



18 2. Divisor class group and canonical class

Corollary 2.2.4 The ring R {X ,a) is factorial if and only if B  is factorial 
and a  = {n — t 4 -1 ,.. . ,  n}.

Proof. The ring R (X ,a )  is factorial if and only if C l(/l(X ,a)) =  0. This 
condition is fulfilled whether C1(B) =  0 and r =  1 in the second case. This 
means that B  is factorial and a  = {n — t + 1 ,. . . ,  n}. □

Actually, when a  = {n — t 4 -1 ,..., n} the ring R(X, a) is isomorphic to a 
polynomial ring over B.

(A) The computation of the divisor class group of ring R (X ,n)  also involve 
the use of Nagata’s theorem. Let B be a Noetherian normal domain, and 
7r = [ai,. . . ,  O2t] 6 II(X). As we already know, if B is a Noetherian normal 
domain then B(X, zr) is also a Noetherian normal domain; see Theorem 2.1.12. 
Under these assumptions, Bruns and Vetter [21, Chapter 8] have shown that

C1(H(X, zr)) =  C1(B) © Ker (C1(B(X, zr)) — > C1(B(X, ^ ) [ r '] ) ) .

By Nagata’s theorem we get that Ker(C1(B(X,TT)) — > C l ț ^ X j ) ^ - 1 ])) 
is generated by the classes of minimal prime ideals of 7rB(X, %). From 2.1.13 
it follows that the ideals I ( i ,Q ,  C running through the upper neighbours of 
7T, are the minimal prime ideals of zrB(X,zr). Let us denote by £ , 0 < z < u 
the upper neighbours of TT. Then

E L o ^ ^ ^ X J )  = o.

and every subset of u of them are linearly independent over Z; see [21, 
pg.94]. AII we have to do now is to find out the upper neighbours of zr.

The standard way to describe the upper neighbours of zr is to break it into 
blocks of consecutive integers

TT = [fio, • • .,&], fii = (flt l  +  l, .. .,flfci+1), 

where fc0 =  0 and fcs + i =  2t. Each Pi is followed by the gap

Xi = (f lt i+ i + L ■ • ■ > % ,+ i  -  1), 

the sequence of integers properly between the last element of pi and the first 
element of Pi + l , and \ s = (a2( 4- l , . . . ,z i) ,  x s = 0 if a2t = zi. For every 
z = 0 , . . . ,  u we get an upper neighbour of zr by replacing atj+1 with a^i+1 4- 1, 
where u = s if O2t < zi and u = s — 1 if a2t = n. If a2t = n and a2t-i = zi — 1 
we can get another upper neighbour of zr, namely

(  = [fli!-", 021-2]-

(In fact, £ is an upper neighbour of zr if and only if a2t = n and a2t-i = n -  1.) 
We are now ready to compute the divisor class group of B(X, zr).
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2.3. Canonical class 19

Theorem 2.2.5 Let B  be a Noetherian normal domain, X  an n x n generic 
alternating matrix over B, and 7r = [ai,...,O2t] € H(X). Then the divisor 
class group of R(X, %) is given by

C1(B) ® Z s if a2t < n or a2t = n and a2t_i = n — 1 
C1(B) © Zs - 1  if a2t = n and a2t-i < n — 1.C l(fi(X j))  =

The summand Cl(fî) arises naturally from the embedding B  — > R (X ,ii), and 
the summand h s or S s —1 is generated by the classes of any set of s or s — 1, 
respectively of the prime ideals I(x,Q ) and I(x ,Q .

We can now determine when the rings under consideration are factorial.

Corollary 2.2.6 The ring R(X, %) is factorial if and only if B  is factorial 
and

7T =  [ai,. . . ,  ai + 2t — 1] or % = [a i,. . . ,  ai + 2t — 2, n].

Proof. The ring R ^ X ,^  is factorial if and only if C lțf i^ T r))  = 0. This 
condition is fulfilled whether C1(B) =  0 and s = 0 in the first case, or s = 1 
in the second case. This means that B is factorial and a^,. . .  ,a2t in the first 
case, respectively a i , . . .  ,a 2!-i in the second case are consecutive integers. □

Remark 2.2.7 If 7r = [aj, . . . ,  ai + 2t — 1], then the ring R(X, 7r) is isomorphic 
to B [y]/I (+ 1 (F), and if 7r = [ab . . . ,  a  ̂+ 2t -  2, n] then R(X, ÎT) is isomorphic 
to a polynomial ring over B[Y]/I t (Y), where V is a generic alternating matrix 
suitably chosen in each of the two cases. This means that the pfaffian rings 
R(X, 7T) are factorial only in the classical case. The result for the classical ring 
of pfaffians Pt+ i{X} was settled by Avramov [3].

2.3 The canonical class of determinant al rings
Given a normal Cohen-Macaulay domain S  with a canonical module ws , it is 
known that us is a rank 1 reflexive module, therefore a>s is isomorphic to a 
divisorial ideal of S\ see Bruns and Vetter [19, Cor.3.3.19]. Its class in C1(S) is 
called a canonical class. Furthermore, if S is a positively graded algebra over a 
field, then S  admits a canonical module and this is unique up to isomorphism, 
consequently there exists a unique canonical class of S. If B =  If is a field, 
then the rings R(X,6), R (X ,a), and R { X ^ )  are normal Cohen-Macaulay do- 
mains and positively graded A'-algebras.

(G) Let 6 = [a i,.. . ,  a ^ , . . . , 6J e A(X), £  and r̂  the upper neighbours of 
6 arising from raising a row, resp. column index, and in case at = m, bt = n, 
'y = [ai,. . .  ,a t_i\bi,. . .  ,bt-i]. Denote by u -I- 1, resp. v + 1 the number of
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20 2. Divisor class group and canonical class

blocks (of consecutive integers) for the row part [a!,. . . ,  at ], resp. column part 
[ & i , , &t]. Furthermore let w = u if at < m, w = u — 1 if at = m, and z = v 
ii bt < n, z = v — 1 if bt = n. With these notation we can assert:

Theorem 2.3.1 Let B  be a normal Cohen-Macaulay domain which admits a 
canonical module WB, and let cl(w) be a canonical class of R — R(X ,6).
I f at < m or bt < n, then

cl(w) =  cl(wB /î) + £ X 0 kid(I(x, Ci)) +  ^ [ = 0  /iCl(/(r, T/J),

where k ^  -  kt = |x*-i| -  |Ab for i =  l , . . . ,w ,  l ^  -  li = |x*_i| -  |/3’ |, 
for i = 1 ,...,-?, and lz -  kw = | ^ |  -  |Xw| if at < m, bt < n, lz -  kw = 
(\xz \ + I&H-I D -  |Xw| i fa t = m, bt < n, resp. lz -  kw = \x*\ -  ( |# +1 + |Xw|) 
if at < m, bt = n.
If at = m and bt = n, then

cl(u) =  cl(u/s 7?) + £ X 0 fc .c^ ți, Ci)) + E U  ^ K ^ 1 - ^i)) + kci(I(x, ?)),

where k ^  -  k, = |x i-i| -  |Ab for i = l , . . . ,w ,  l ^  -  li = |x7-iI -  l# b  for 
i — b  • • ■ >̂ i and k kw — \Pw+i | — |Xwb k — lz — |^z+il |x2 1•

Note that the ring R(X, 6) is Gorenstein if and only if B  is Gorenstein and 
all the differences in Theorem 2.3.1 vanish.

We single out the most important cases; see Bruns [13], [14], Bruns and 
Vetter [21], Eagon and Hochster [34], and Svanes [62] .

Theorem 2.3.2 Let K  be a field and X  an m x n generic matrix over K. 
Then the classical determinantul ring R i+ \(X} is a normal Cohen-Macaulay 
domain, its divisor class group is Z, and it is Gorenstein if and only ifm  = n. 
Moreover, if m < n its canonical module is the ideal p ^ - ”1̂  where P is the 
ideal of R t+ i(X ) generated by the t-minors of the first t rows of X .

(S) To compute the canonical class of R(X, o) we shall use the isomorphism 
(2.3), induction on n, and the following lemma due to Bruns [21, Lemma 
(8.10)].

Lemma 2.3.3 Let A be a normal Cohen-Macaulay domain, and I  a prime 
ideal of height 1 in A such that A /I  is again a normal Cohen-Macaulay do­
main. Let Q-L.,. . . , Qu be prime ideals of height 1 in A and suppose that the 
class of I  and the class of a canonical module WA have representations

u u

cl(Z) = ^SjC l(Q i) and c l ^ )  =  ^ r jc l(Q i) .
i=l i=l
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2.3. Canonical class 21

Assume further that:
(i) ri -  S i> 0  for i = 1 ,... ,u;
(ii) A n n ^ - ^ Q ^ )  ^  Qi + 1 for i = 1 ,.. .  ,u;
(iii) The ideals Qx = (Qi + 1}/I are distinct prime ideals of height 1 in A / I .

Then A /I  has a canonical module WA/I with

u
d(w4//) = £ ( r j  -  Si)cl(Qi).

i=l

We are now ready to compute the canonical class of R(X, a) and decide 
which one of these rings are Gorenstein.

Theorem 2.3.4 Let B  be a normal Cohen-Macaulay domain which admits a 
canonical module wg, and let cl(w) be a canonical class of R — R (X ,a ).
I f a r < n, then

cl(w) =  cl(uf lfi) + ^ = 0 fc,cl(/(i, G)),

where kz_\ — kz = |Xi-i| — |A|, for i = 2 ,.. .  ,r  and kr = |x r | + 1 mod(2).
I f a r = n, then

cl(w) = cl(wB fl) + ^ = 0 ^ c ^ / ț r ,  G)),

where kz_i — ki = |xi—11 — |Â|, for i = 2 ,... ,r  — 1 and kT~i — 2kr = |x r - i | - 
m - i .

Proof. According to [21, Prop. (8.7)] we may assume that B = K  a field. 
Then the proof goes by induction on n. The case n = 2 is trivial. For a t = n 
and r  = 1, the ring R (X ,a)  is a polynomial ring, hence we may assume that 
r > 1 if a f = n. We may also assume ai = 1; see the proof of Lemma 2.1.8.

The isomorphism (2.3) induces an isomorphism of divisor class groups

^  : C l ^ A » ^ 1]) — > Cl(fl(X ,â)).

The composition of the canonical epimorphism

C l(«(X ,a)) — > C l ^ ^ a ) ^ 1])

with ip* gives an epimorphism

g : Cl(72(X,a)) — > Cl(K(X,ă)).

As long as the localization of a canonical module is also a canonical module, 
we get that g maps he canonical class to the canonical class.
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22 2. Divisor class group and canonical class

For a 2 = 2, we get by (2.4) that j(c l( /( i,( i)))  = c l(/(i,( ,))  for all i = 
1 ,... ,r . Now one applies the induction hypothesis.

For Q2 > 2, we get by (2.5) that j(cl(Z(i,(i))) =  c l(/(i,(i_ i)) for all 
i = 2 ,. . .  ,r  and j(c l(/(r,C i))) =  0. By induction, it is enough to prove only 
the relation which involves ki. We will distinguish three cases:

Case 1: a t < n and r =  1. Then a  =  {1}, and R (X ,a ) = R 2 ( X \  But 
Goto [42] has proved that R 2 (X) is Gorenstein if and only if n = 0 mod(2). 
Therefore &i =  n = |xi| + 1 mod(2).

Case 2: a t = n and r — 2. Set xi = P — 1, with n > p > 1. Hence 
a  = { l ,p + l , . . . ,n}. We will show that k i —2k2 = p—l — (n—p) — l = 2p—n —2, 
i.e. cl(w) = (2p — n — 2)cl(/(i,G ))-

Let X ' be the submatrix of X  of the first p rows. One denotes by S  the ring 
K [X ']/I2 (X '), where ^{.X'} is the ideal of K[X'] generated by all 2-minors of 
X'. One has that I2 (X')K[X] =  /(X ,a ), and S[X \X ']  = R(X,aY, see [22, 
Remark 2.5(c)]. One gets that S is a normal Cohen-Macaulay domain, and a 
canonical isomorphism Cl(5) = Cl(fî(X ,a)) which maps the canonical class 
to the canonical class. The extension of the ideal P  = ( i n , . . .  , i ] n ) of S  to 
R (X ,a)  is /(x,G )- Therefore it is sufficient to show that the canonical class 
of S  is cl(ws) = (2p — n — 2)cl(P). In order to prove it we will use Lemma 
2.3.3.

Let Q = (xij, 1 < i < j  < n ,i  < p). It is immediate that Q is a prime 
ideal of height 1 in S, cl(P) and cl(Q) are generators of C1(S), and the only 
relation is 2cl(P) + cl(Q) = 0.

Let us first consider p = 2. We will argue by induction on n. For n = 3, 
(2p — n — 2)cl(P) = -c l(P ) = cl(P) +  cl(Q), therefore we have to show that 
the ideal J — P C\ Q = ( i n , i i 2) is the canonical module of S. In this case 
dim(S) = 3, and S /J  = X [X i3 , X 22, X 23]/(X 22X 13). Thus J  is a maximal 
Cohen-Macaulay S-module. Therefore J  is the canonical module of S  if and 
only if its Cohen-Macaulay type r(J) is 1. The sequence x = x ^ , x 23 ,x i3 — x 22 
is a system of parameters of S, hence x is a maximal regular S-sequence and 
J-sequence. Computing the Hilbert series of S and S /J , one shows that the 
Hilbert series of J  is 2t + Z2 / ( l  — t)3 , hence the Hilbert series of J /x J  is 
2t + t2 . The homogeneous component of degree 2 of J /x J  is generated by 
^ 1 1 ^ 1 3  =  i n X 2 2  =  ^ i 2  =  ^ 1 2 ^ 1 3 - It is clear that no 1-forms of J /x J  annihilate 
the maximal ideal of S. So we get r(J) = 1.

Now suppose n > 3. We will apply 2.3.3 with respect to the ideal I  = 
( i in , i 2n). It is obvious that I  =  ( i n , i i 2) = P n Q ,  therefore cl(/) = cl(P) + 
cl(Q). We may write cl(ws) = acl(P) + bcl(Q), and we can assume that 
a, 5 > 0. Observe that the ideals P,Q  are principal after inversion of i 23. 
Then a power of r 23 annihilates p ^ -V  /  p 0--1 and Q ^^^ /  Qb~x . As P  + /  and
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2.3. Canonical class 23

Q + I  are prime ideals and do not contain the element I 23> the condition (ii) 
in 2.3.3 is fulfilled. By induction one gets a — 1 — 2(6 — 1) =  2 — (n — 1) — 2, 
that is a — 26 = 2 — n — 2.

For p > 2, one argues again by induction using 2.3.3 with respect to the 
ideal I  =  (^iP , . . . ,  Xpp, xp p + i , . . . ,  %pn)- Note that cl(/) = cl(P), and that P 
and Q are principal after inversion of x2 n . This concludes the Case 2.

Case 3. a t < n and r > 1, or a t = n and r > 2. We have to prove that 
^  -  k2 = |xi| -  |&|- Set h =  1^1, and C = p3 , . . . ,  PT. Then a  = { l ,a 2 ,a 2 + 
l , . . . , a 2 + /Î -  1, C}. Set a = {a2 , a 2 + 1 , . . . ,  a 2 +  h, C}. Denote by y the 
residue class of the minor [cr|a] in R(X, a). By construction, y G I(x, Ci) if and 
only if cr > G if and only if i =  1 or i =  2. In order to isolate k  ̂ and k2 from the 
expression of cl(w), we will invert y. The class fcid(I(i,Ci)) +  fc2cl(/(z, C2)) is 
the canonical class of ^ ( X .a ) ^ " 1]. As in [21, Lemma (8.11)], we may identify 
the ring lîțA 'ja )^ " 1] with a polynomial extension of a determinantal ring 
associated with the ideals of the 2-minors of a generic matrix of indeterminates. 
In this vein one considers the following sets:

$1 =  {[^k j] : 1 < i < j  < n} U {[a|ă] e △(%,») : 
â differs from o in exactly one index},

^2 = {[^k] ^ △(A", a) : & differs from <7 in exactly one index}.
_-—-——

Denote by djk the sequence {j, a 2 , . . . ,  (a2 + h + 1 — k ) , . . . ,  a 2 +h, C}, and set 
Mjk =  [ ^ i l 4  Clearly ^ 2 = {M ^  : 1 < j  < a2 , 1 < A: < h + 1}. As in 2.1.3, 
expanding the minor [i,a\j,a], one shows that P(X, a)[y- 1 ] = / ( [ ^ [ Î/ " 1]. AII 
we have to do is to determine the relations between the elements of 'I'. Actually, 
we claim that for all 1 < j, ji < a 2 and l < k < k i < h  + l'we have

M j f c M ^ k i  [ ^ j A j i l | ^ j V j i k , ] [ ^ | ^ ]  —  M j k ț M j i k ,

where j  A >1 = m in{ jji}  and j  V ji = min{j,ji}.
First note that M j^M j^  = [^ J c k lH ^ tJ ,  since the matrix is symmetric. 

Then consider the ” generic straightening relation” of [crJ fc|cr][cr|o'J1jb] ]. Each 
standard monomials in generic standard representation of [^jk^l^^j^ki] con- 
tains at most two factors. There are only two such standard monomials ob- 
tained from the indices of the minors under consideration, namely

[^ k l^ i tJ k k ]  and [A ^ L Â , ^  \  {a2 +  / 1 + 1 -  fc}|ff \ { a 2 + /i +  l -  fcr}]-

The first standard monomial appears in the representation with coefficient 1 
(to see this specialize j  = k in the generic expression), and the second vanishes 
in R (X ,a). Therefore

[ffjtH H ^ .k J  = fok l^ ifcJ^H ,
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and it remains to show that [ â j i l ^ t j  =  [^Aj-ik|^vjiti]- Because the matrix 
is symmetric, the equality is straightforward from the fact that the 2-minors 
of the first (a2 — 1) rows are 0 in R(X, a).

Now we choose an (a2 —1) x  (h + 1) matrix of indeterminates T  = (T^), and 
an independent family {T^, : V> 6 ^ i}  of new indeterminates. Denote by a the 
determinant of the t x t  symmetric matrix (T^i^.]), and consider the following 
surjective ring homomorphism w : K[T][T^, : V € ^i][f l - 1 ] — > f i ^ 0 ) ^ ’ 1]; 
defined by w(Tij) = Mij, and w^T^) = i/). The ideal h^T ) is in the kernel of 
w, and a maps to y, so we get a surjective homomorphism

W  : K[T]/I2 (T)[T^ : ^  G ^ [ a - 1] — > ^ a ) ^ 1].

An element ă > a which differs from a in exactly one index and has t entries 
is obtained from o by replacing an index ô  with an index k > Oj and k ^  Oj 
for; > i. Weget |^ 2 | =  i(i +  l) /2  +  ̂ ‘= 1 ( n - ^ - i  + i) =  t ( n + l ) - ^ = 1 a i - 
(a2 + h — 1) = dimR  — (a2 + h — 1). On the other hand, dim K[T]/I2 (T)[T^ : 
ip G ^i][a - 1 ] = 1^1 + (a2 + h — 1), therefore IV is an isomorphism.

Furthermore the prime ideal P  of K[T]/I2 (T) generated by the elements 
of the first row of T  extends to I(x, (^R ^X , a ) ^ - 1 ], and the prime ideal Q 
generated by the elements of the first column extends to Z(x, 2̂ )7Î(X, a)[y- 1 ]. 
By construction we have

w(T i k ) G /(rr .G j^ X .a X y - 1 ] and w ^ T ^  G / ( i ,  (2)72(X, a)[y^'].

Then the extension of P  is contained in /(r ,( i)f l(X ,a )[y _ 1 ], and both are 
prime ideals of height 1, so that they must coincide.

Therefore we get an isomorphism between the divisor class groups

Cl(K[T]/I2 (T)) CI(S(X ,O ) | j - I |),

and we deduce that A4cl(F) + fc2cl(Q) is the canonical class of K[T]/I2 (T). 
From [21, Theorem (8.8)] one deduces that kx — k2 = (a2 — 1) — (h + 1) = 
(a2 - 2 ) - h = | X 1 | - | / 3 2 |. □

Corollary 2.3.5 Let B  be a Noetherian ring. Then the ring R = R (X ,a ) is 
Gorenstein if and only if B  is Gorenstein and
IXt—11 — IAI = 0, for all i = 2 ,. . .  ,r , and fcr  + 1 E 0 mod(2) if a t < n, or 
IXi-il -  |A| = 0, for i = 2 ,.. . , r  -  1 and kT_ } -  |^r | - 1  = 0.

We single out the most important cases; see Kutz [53], and Goto [41], [42].

Theorem 2.3.6 Let K  be a field and X  an n x n generic symmetric matrix 
over K . Let 1 < t  < n. Then the classical ring St+ i(X ) of symmetric minors 
is a normal Cohen-Macaulay domain, its divisor class group is Z2 , and it is 
Gorenstein if and only i f t  + 1 = n mod(2). Moreover, if t + 1 ^  n mod(2), its 
canonical module is the ideal P  generated by the t-minors of the first t rows of 
X , and its Cohen-Macaulay type is (").
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Proof. One observes that a minimal System of generators of P  is given by the 
t-minors of the first t rows, since are all doset minors. The rest follows easily 
from 2.2.3 and 2.3.4. □

(A) We are going to compute the canonical class of R(X, 7r) and decide which 
one of these rings are Gorenstein.

Theorem 2.3.7 Let B be a normal Cohen-Macaulay domain which admits a 
canonical module UQ, and let cl(w) be a canonical class of R  = R (X ,TP).
If a2t < n or a2t — n and a2t-i < n — 1, then

cl(w) = cl(wf lH) + ^ “= 0 kic\(l(x, G)),

where ki_^ — ki = |x i-i| — |Ab f o r  M  i = 1 ,... 
If a2t =  72 and d2t—\ — TI — 1, th&n

cl(w) =  cl(w f l f i )  +  ^ ^  fc ic l( /( i,  Ci)) +  H ( / ( i ,  0 ) ,

where ki-i — k{ — |X M | — |A|> f o r  all i = 1 ,. . . ,  s — 1 and ks_\ — k = |x«—11 — 
IAI + 1-

Proof. According to [21, Prop. (8.7)] we may assume that B = K  a field.
In the first case, remember that the upper neighbours of 7r are

Ci [Ab ■ • • > / î - 1; (®i, + l i  • • • > ^kf+i -1), a^i +  1 "t 1 > A + l; • • • ; Ps\>

i = 0 ,.. .  ,u. (Of course, u = s if a2t < n and u = s — 1 if a2t = n and 
a2t-i < n.) Since ^ “. Q cl(I(i, Ci)) = 0, the differences k ^  — ki f i = 0 ,. . .  ,u 
determine cl(w) uniquely. In order to isolate k^^  and k{ in the representation 
of cl(w), let us consider the elements â  in F^X, 7r)

f i  [̂ Oi • • • i ^ i—2i (®tj_i + l > • • •» ®fcj-l)> (fl/cj + l , • • •> ®kj4-i! ^k^i T  1)» • • •> Â+l >

for a lli =  1 , . . . ,  u. Let S = UjiT’ 1]. Because Cj < fi if and only if ;  =  i - 1  or 
j  = i, the ideals I(i,C i-i) and I(x ,ți)  are the only minimal ideals of 7r which 
survive in S. Then

cl(ws ) =  ^-101(1(1, Ci-1 )■$') +  ^ id ( I ( i ,  Cij-S')-

Following the ideas of Bruns and Vetter (see [21, pg.101-102]), we get that 
the ring S  is isomorphic to a polynomial extension of a determinantal ring 
associated to the ideal of the 2-minors of a generic matrix of indeterminates. 
In order to do this we consider that cr, = [a i ,. . . ,  a 2 t] and let ^  =  {[ojOj] : 1 < 
i < j  < 2/} U {5 € II(X, 7r) : 6 differs from cr̂  in exactly one index}. Almost 
everything goes as in [21, Lemma (8.11)] (instead of Pliicker relations we must
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use Lemma 6.1 from [28]), and finally we get that k ^  — ki = |x i - i |-  |A|. One 
should observe that the similarity with Lemma (8.11) from [21] is preserved 
in this case just because we deal only with 2t-pfaffians. This is not the case in 
the second part of the proof.

As we have seen before, in the second case, when a2t = n and a2t-i = n —1, 
once with 0, i = 0 , . . . ,  s — 1 appears another upper neighbour of 7r, namely 
£ = [di,. . . ,  a2t—2]- In order to isolate ks_i and k in the representation of cl(w), 
we should consider now a (2t — 2)-pfaffian a in n(X , 7r)

<7 =  [ai, • • •, a ^ - i ,  afc,+i,. . . ,  a2t-i].

Of course, țj < a  if and only if j  =  s — 1 and moreover £ < a. So the ideals 
I (x ,țs - i)  and 7 ( i ,( )  a r e  the  °nly minimal prime ideals of 7r which survive 
in S = B[cr- 1 ]. To determine the structure of the ring S  we shall introduce 
the set $  =  {[aiQj] : 1 < i < j  < 2t — 2} U {5 6 n(X , 7r) : 6 differs from 
o in exactly one index}, where a =  [a i,. . . ,  «21-2], and subdivide it into two 
subsets ^1 =  {5 G ^  : ^ > f}  and ’I^ =  {5 G yt : <5 ^  ^}' We get

^2 = {[$1, • • • ,“k,-i>“k, + y — 1, ®i,+2> • • • ,da-i] : 1 < j  < “*,+i ~ a k,}, 

so that |$ 2 | = ojc,+i — G ,̂. On the other hand, ^ i  is quite similar to the set 
defined in 2.1.11, therefore |$ i | = dim B(X,cr) — dimB. Let p = a*1 + i — a^ 
and q = 2t — ks . We choose a p x q matrix T  of indeterminates, and an 
independent family {T^ : ^  ^ ^1} of indeterminates over B. Analogous to 
[21, Lemma (8.11)] we claim that the substitution 7^ — > V', V' ^ 'I'i,

Tjl --- ► [a l, • •• , a ks- l , a k3 + j  ~ b ^ + h  .. • ,d2t],

and

Tjk --- > [ai, • • • , G^-l, Gfc3 + j  — l>Ot( +l> • • • , O^+k-l, • • ■ , O2(-l]>

for k = 2 ,... ,2t — ks induces an isomorphism

(B[T]/I2 ( T ^  : V- G v ^ n r 1] - 4  B fa-1],

where /  =  pf((XQjQJi<i<j<2t-2)-
We should observe that the substitution maps /  to &, so we get a homo- 

morphism
V : B[T][?V : ^  6 ^ J ^ 1] — > B ^ " 1],

and its image contains B f^ ]^ - 1 ]- In the same way as in 2.1.11 we get that 
every element [uv] G n(X,7r) belongs to B[l][cr- 1 ], except the case when u = 
a^, + j  — 1, 1 < j  < p and v = n. In this case the element [u, v, a i , . . . ,  a 2t-2\ 
is the image of Tji by <p, and it expands in R(X, %) with respect to the first
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2.3. Canonical class 27

two rows in a sum which contains the term [uv]a and another terms which 
belong to the image of ip, so [uv] is in the image of <p, too.

Now we prove that h (T )  is in the kernel of tp. This means that the image 
of the product of indeterminates Tjk and Tim  coincides with the image of the 
product of Tjm  and Tik. There are two cases to consider.

Case 1: fc =  1 o r m =  1. Let us consider that k = 1 and m > 1. Then the 
product in R(X, ir) of the pfaffians

[o-l, - - , ^ - b ^ ,  + j  — k ^  +  b  • • • , O2t]

and
[ d l ,  . . .  , fl^3 -  i , Uka + l 1 , Gfcs  +  1 , ■ • ■ > ^ka+m-ly • ■ • > ^ 2 t—1]

can be expanded using [28, Lemma 6.1]. We get that this product coincides 
with the product of pfaffians

[ d l > ' " >  Gka-\,ak, + l ~  l > a k ,+ l>  • • ■ > a 2t]

and
[ d l , • • ■ , d k , - l , Gka + j  L  ® l, +  l > • ■ ■ i ^ k j+ m —1 > • • • > ® 2t-l]>

because the other two terms of the sum which possibly appear should contain 
the pfaffians

[ d l , . . . , Ok,-1, Gk, +  J  —  L  a k, + l ~ 1, Q tj  +  l , • • • , d j j + m - l ,  • ■ • , f l 2(]

and
[ a i ,  • • • ,G f c ,- i ,G j t ,  + j  ~ ^ ,a k, +  /  — 1 , a f c ,+ i ,  • • • ,  d 2 t — i]

respectively, which drop out in R ^X ,^).
Case 2: k > 1 and m > 1. In this case we have to consider the product of 

two (2t — 2)-pfaffians, namely

[“ h - - - ,  a k,-l,Gks + j  — h ^  + b  ■ ■ ■ , âk,+k-l, • ■ • , O 2 t-1 ]

and
[a l > • ■ • > d t , - b  O*, + l — 1, Gfcs +  b  • • • > ® l ,+ m - l>  Q 2 I-1 ]’

This product is expanded again using [28, Lemma 6.1], and one observes that 
all the terms we can get contain a pfaffian which drops out in R{X, ir) (this 
pfaffian contains the indices aka + j  — 1 and aks + 1 — 1), except the product 
which involves the pfaffians

[ d i , . . . , d ^ - i ,  Gk, T  J  —  1 > ®Jt, +  l ,  • • • > ^ t j + m - l ,  ■ • • > ® 2 t- l ]

and
[ d b - - - ,  « 1 , - b  a k3 + l ~  l , a i ,  +  b  ■ ■ • , a ks + k - b  ■ • • , d 2 i - l ] .
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Because the ideal I2 (T) is in the kernel of p, we get a surjective homomor- 
phism

(B m (T )K  : V e *J[r'l —» «k-'].
Notethatdim(B(7’] / /2 (7’))[7* : V 6 * i | l / - 1 ) = d im B + ( p + g - l ) + | 't I |. But 
l^^  =  dim P(X, cr) — dim B (see 2.1.11), so we have dim(B[T]//2 (T))[T^ : ^  G 
^ i] [ / - 1 ] =  (p + g -l)+ d im B (X ,a) = ( p + g - l ) + d i m S + 2 n ( t - l ) - £ ^ 2 a, = 
( p + q - l )  +  dimB + 2 n / - ^ 1 ai + (aka - n )  = (p + q -  1) + (aka - n )  + d im R = 
dim P = dirnBfa- 1 ]. Therefore the surjective homomorphism above is an 
isomorphism.

Furthermore the prime ideal P  generated in B[T]/I2 (T) by the elements 
of the first row of T  extends to I (x ,țs - i)S , and the prime ideal Q generated 
by the elements of the first column extends to I(x ,Q S . By construction 
p(Tji) G I{x ,Q S y and p(T l k ) G I(x,C,s-i)S. Then the extension of P  is 
contained in I{x, ( s-i)S , but since both are prime ideals of height 1 they must 
coincide, and the same argument works as well for Q.

We get an isomorphism between the divisor class groups

C1(B[T]/72 (T)) - 4  C1(S),

therefore we can deduce that fcs_icl(P) +  h l(Q ) is the canonical class of 
B[T]/I2 (TY By [21, Theorem (8.8)], we conclude that ks _\ — k = p — q = 
( p - l ) - g  +  l =  |xa- i | - | ^ |  +  l. □

Corollary 2.3.8 Let B  be an (arbitrary) Noetherian ring. Then R(X,ir) is 
Gorenstein if and only if B  is Gorenstein and
|Xt-i| — |A| = 0 f o r  all i = 1 ,... ,u  if a2t < n or a2t = n and a2 t^  < n — 1, or 
|XM | — |A| = 0 for all i = 1 , . . . ,  s -  1 and |xs—11 — |A | + 1 = 0 if a2l = n and 
d2t-i = n — 1.

We single out the most important cases; see Avramov [3], and Kleppe and 
Laksov [50].

Theorem 2.3.9 Let B  be a field and X  an n x n generic alternating ma- 
trix over B. Then the classical ring of pfaffians Pt+ \(X} is a normal Cohen- 
Macaulay domain. Moreover, it is factorial and therefore Gorenstein.

Proof. As we have seen in Section 2, Cl(P( + i(X)) = 0. Therefore P(+ i is 
factorial, and by Murthy’s theorem (see [37, §12]) it must be Gorenstein. □
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Chapter 3

Grobner bases and 
determinantal ideals

3.1 Bitableaux, combinatorial alghoritms, and 
the Knuth-Robinson-Schensted correspon- 
dence

The Knuth-Robinson-Schensted correspondence, KRS for short, is a one-to- 
one correspondence between standard (Young) bitableaux and two-line arrays 
of positive integers of a certain type. It is constructed by Knuth [51] relying 
on a combinatoria! algorithm of Schensted [58].

We first consider the (bi)tableaux as purely combinatoria! objects, that is, 
we cal! a (Young) tableau an array of positive integers A = (a^), 1 < i < u, 
1 < j  < r i with n  > •■• > r u . Such a tableau is said to be standard if it has 
the numbers in each row are in strictly increasing order from left to right, and 
the numbers in each column are in non-decreasing order from top to bottom 
(that is aij < ajj+ x for all i =  1 ,. . . ,  u, j  = 1 ,. . . ,  r̂  — 1 and a^ < ai+ ij for all 
i = l , . . . , u -  1, j  = 1 , . . . ,  r,+ i). The shape of the tableau A is the sequence 
A =  ( r i , . . . , r u ), and the length is r^  (We will often caii shape a non-increasing 
sequence of integers without reference to a tableau.) A standard bitableau is 
an ordered pair S = (A, B) of standard tableaux of the same shape. We define 
min (S) as being the bitableau formed by the first rows of A and B.

We shall describe Schensted’s algorithm DELETE (for deleting a place 
from a standard tableau) and its inverse INSERT (for inserting an integer in 
a standard tableau).

Definition 3.1.1 The inputs of DELETE are a standard tableau A = (aij) of 
shape ( r i , . . . , ru ) and an index i, i = 1 ,... ,u, such ri > rt + l . The outputs are 
a standard tableau B  of shape (r1 ; . . . ,  r ^ i ,  r̂  — 1, r1+1, . . . ,r u ) and an element
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30 3. Grobner bases and determinanta! ideals

a E A. The element a is determined successively as follows. Set ai = air i , and 
for j  =  z — 1 ,. . . ,  1 let aj be the largest element of the j th  row of A less than 
or equal to aj + 1 . Then we define B  as the standard tableau obtained from A 
replacing aj with aj+ 1  in the j th  row for j  =  z,. . . ,  2. Then set a = a  ̂ and 
remove the element ai in the zth row.

Let us consider the following example.

E xam p le  3 .1 .2  Let
/  1 2 4 \

A -  1 3

3 5

be a standard tableau of shape (3,2,2,1), and set z = 4. Then a4 = 4, a3 =  3, 
G2 =  3, a — Gj =  2, and

/ 1 3  4  A
B = 1 3 .

\  4 5 /

D efin ition  3 .1 .3  The inputs of INSERT are a standard tableau B = (bij) of 
shape (r1, . . . , r u ) and an integer a. The outputs are a standard tableau A 
whose shape is ( r i , . . . ,  ri_i,ri +  1, rj+ 1 , , , . , r u ) and an integer i. We define 
successively a sequence of integers. Set ai = a. Then suppose a ^ ,... ,aj has 
already been defined. If aj > bjr . or j  = u + 1, then the sequence terminates. If 
aj < bjT j, let aj+ ] be the minimum of the elements of the jth  row of B  greater 
than or equal to aj. Thus we have got a sequence a^,. . .  ,ai and ai > biTi or 
i = u +  1. Then we define A to be the standard tableau obtained from B 
by replacing aj+ 1  with aj for j  =  l , . . . , z  — 1, and by adding ai in the place 
^ ,r i  + 1).

E xam ple 3 .1 .4  Let

B =
3
3
5

2 3 4 \
4 5
6 8
6

be a standard tableau of shape (4,3,3,2), and set a =  3. Then ai = 3, 02 = 5, 
a3 = 6, a4 =  8, i = 4 and

2 3 4 \
4 5 8
5 6
6
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The algorithms DELETE and INSERT are clearly inverse one to each other. 
If DELETE applied to input (A ,i) gives the output {B,a}, then INSERT 
applied to (B,a) gives output (A^i).

As we claimed the Knuth-Robinson-Schensted correspondence is a one-to- 
one correspondence between the set of the standard (Young) bitableaux and 
the set of the two-line arrays of positive integers of a certain type. The two- 
line array KRS (S) is constructed from the non-empty standard tableau E of 
shape ( r i , . . . ,  ru ) by iteration.

D efin ition  3 .1 .5  Set r — ri + ■■■ + ru and define the two-line array

KRS (S) = Ur
Vr

which satisfies the conditions u^ < ■ ■ ■ < ur and v̂  > v,+ i if u, =  ui + i by using 
a procedure that determines the elements Ui and Vi recursively via a sequence 
of standard bitableaux E, = (Ai,Bi) as follows. Starting with Er  = E, for 
i =  r , . . . , l :

• Let Ui be the maximum of the elements of Ai. Suppose that s is the 
largest index such that Ui can be found on the sth row of Ai. Then 
define A ^  as being the standard tableau obtained from Ai by removing 
the element in the sth row.

• Apply DELETE to the pair (Bi,s). The outputs will be Vi and Bi-t.

• Set Ej_i = (Ai^i, Bi^i)

Let us give one more example.

E xam ple 3 .1 .6  Let E = (A ,B), where

3 4 5
6

and
2 3 6
5

Then u6 =  6, v6 = 5,

1 2  5 6
4

«5 = 5, v5 =  6,

^ 4  — M 4 ,  Bl) —
1 3 4
2

1 2 5
4
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un = 4, U4 =  5,

^ 3  — ( ^ 3 ,  B 3) —
1 3
2

1 2
4

^ 3  = 3, v3 =  2,

u2 = 2, w2 =  4,

«i = 1, Vi = 4.

^ 2  — ( ^ 2 ,  B2) —
1 1
2 4

Si = ( 1 I4 ).

Consequently, we get

KRS (E) = 1
4

2 3 4 5 6 \
1 2 5 6 3 J  '

To get the inverse of KRS one just applies the algorithm INSERT to the 
bottom line of the array to build the right tableau: at step i it inserts Vi in 
the tableau obtained after the step i -  1. In the same time the left tableau 
is built by placing the element Ui in the position which is added to the right 
tableau by the îth step of INSERT.

3.2 Schensted and Greene’s theorems
The main result in Schensted [58] deals with the determination of the length of 
the longest increasing (decreasing) subsequence of a given sequence of integers. 
Let v = (v i,. . . ,  vr ) be a sequence of integers and let INSERT(v) be the stan­
dard tableau determined by the iterated insertions of the Vj. A subsequence 
v,], . . . ,  V{k of v with ii < • ■ ■ < ij is called increasing (resp. decreasing) if 
v ii < • • • < Vik (resp. Vi] > ■•• > ViJ. The length of a sequence is the number 
of its elements.

There is a close relationship between the shape of INSERT(v) and the 
sequence v given by the following theorem of Schensted [58].

Theorem 3.2.1 The length of the longest increasing (resp. decreasing) sub­
sequence of v is the length of the first row (resp. column) in the tableau 
INSERT(v).

However, later on it will be useful to have an interpretation for the rest 
of the shape of INSERT(v). We may ask whether the length of the ith row 
(column) for i > 1 have a similar meaning. The answer is yes, but we cannot
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interpret them individually. Actually, some of their parțial sums give Infor­
mation on the decompositions of the sequence v into increasing (decreasing) 
subsequences. This connection is the content of Greene’s extension of Schen- 
sted theorem; see Greene [43]. At this moment an observation of Schensted 
[58] is in order: we can replace any sequence by a sequence of distinct integers 
such as the increasing (decreasing) subsequences of these two sequences will be 
in one-to-one correspondence. Moreover, if we perform the algorithm INSERT 
on both sequences we get two standard tableaux with the same shape.

Let us now enter the details and explain the theorem of Greene. For a 
sequence v = (v i , . .. ,v r ) of integers and k < r, denote by dk (v) the length of 
the longest subsequence of v which has no increasing subsequences of length 
k + 1. It is rather easy to see that any such sequence is obtained by taking the 
union of k decreasing subsequences. Similarly, we define ak (v) to be the length 
of the longest subsequence of v which has no decreasing subsequences of length 
fc +  1. Note that ai(u), respectively di(v) represent the length of the longest 
increasing, respectively decreasing subsequence of v. If A = ( n , . . .  , r u ) is the 
shape of a tableau A we define A* = (r*,. . . ,  r^ ) to be the dual shape, that is 
r* is the length of the ith column of A, equivalently r* is the number of rows 
of A of length at least i. We are now ready to state Greene’s theorem.

Theorem 3.2.2 For every sequence of integers v and every k > 1 we have

ak (v) = ri -̂------ F r t  and dk (v) — rț -\------ F r*k ,

where A = (r i ,. . . ,  ru ) is the shape of INSERT(v) and A* = ( r j , . . . ,  r*J is the 
dual shape of A.

3.3 KRS and generic matrices
(G) Next we describe a correspondence between standard bitableaux and 
monomials of the set of indeterminates X  = {Xij : i , j  =  1 ,2 ,...} . Note that 
every monomial f[  X ^ 3 can be uniquely rewritten in the form X U1Vj • • • X UrVr 
with ui <■•■< ur and Vi > v;+1 if Ui = Ui+ i. Therefore we have a one-to-one 
correspondence between the set of monomials in X  and the set of two-line 
arrays of positive integers with the above mentioned properties.

We shall identify a product of minors of a generic matrix X  = (Xij) with 
a bitableau, that is, whenever p = 6\ ■ ■ • 6U with Si = [aj l ;  • • •, a iri l^ii, bi rJ 
an r^-minor, n  > • • • > r u , we consider p as being the bitableau S = (A, B), 
where A = (aij) and B = (bij) are tableaux. It is obvious that the standard 
monomials correspond to the standard bitableaux.

If we restrict our attention to standard bitableaux and monomials whose 
entries, respectively indeterminates come from an m x n generic matrix X , we 
get the following
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Theorem 3.3.1 KRS is a one-to-one correspondence between the set of stan­
dard bitableaux on the set { 1 ,. . . ,  m} x { 1 ,..., n} and the monomials in K[X],

Note that Theorem 3.3.1 implies that KRS is a bijection between two dis­
tinct bases of the K -vector space K[X], namely the standard base and the 
monomial base. Therefore we can extend KRS to a A-linear automorphism 
of Jf[X], and we will often take this point of view in the sequel. The automor­
phism KRS preserves the total degree, no column or row index disappears, 
but however it is not a K-algebra isomorphism: it acts as the identity on 
indeterminates but it is not the identity map.

Remark 3.3.2 (a) The definition of standard tableaux and the algorithms 
DELETE and INSERT correspond to the definition of dual tableau and to the 
algorithms DELETE* and INSERT* in the Knuth’s paper [51]. In particular, 
Knuth treats the KRS correspondence for column standard bitableau with 
increasing columns and non-decreasing rows. (This will be our point of view 
in part (A)). The above version is the “dual” version, in terms of Knuth; see 
Knuth [51, Section 5].

(b) The KRS correspondence is also extensively treated by Fulton [38], 
Sagan [57], and Stanley [60]. These books are highly recommended for the 
interested reader in the applications of KRS in combinatorics and the group 
representations theory.

We end with some important properties of KRS.

Lemma 3.3.3 KRS commutes with the transposition of a matrix, that is, 
whether E : K[X] — > K[X] denote the K-algebra isomorphism induced by the 
substitution X ^ ।— > Xji, then KRS (E(/)) = e(KRS (f)) for all f  G K[X].

Proof. It is sufficient to prove it for f  a standard bitableau. The argument is 
essentially the same as in Knuth [51, Theorem 3]; see also Herzog and Trung 
[45, Lemma 1.1]. □

In the application of KRS to find Grobner bases of determinantal ideals 
the next result is a key step.

Lemma 3.3.4 Let Y. be a standard bitableau, and [au , ■ • ■, uir, |bn, • • •, bir,] 
its first row. I f KRS (S) = XU1V1 • • • X UrVr, then for every s =  1 , . . . ,  rj there 
exists a factor X UQ V̂Q } ■ • ■ X UaaVaa of KRS (S) such that ua i < ••■ < ua a , 
va i < • • • < vQa and uQs = ais (respectively vQa = bl s ).

Proof. Let E, = (Ai,Bf), i = l , . . . , r ,  be the standard bitableaux occurring 
in the above described procedure of computing KRS (S). It is not difficult to 
see that

KRS (£<) U ' U ' V
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Furthermore, there is a step of the procedure when û  = a\s , and 4 j_I is 
obtained from A, by removing the element a l s . So ais is the maximum of the 
elements of A,, hence the first row of 71, must end by ais . It follows that the 
length of the first row of Ai, resp. A^_i is s, resp. s — 1. According to Theorem 
3.2.1, the length of the longest increasing subsequence of Vi,. . . ,  v, is s, and 
that of v i,. . . ,  Vi-i is s — 1. Let vQ1 < • • • < vas be an increasing subsequence 
of Vi,. . . ,  Vi. It follows that a s = i, hence uQs = Ui = ai s . As vQ1 < • ■ • < wO j, 
we also get ua i < • • • < uQj since KRS (S) satisfies the conditions of Definition 
3.1.5, and the proof is done. □

(S) In this part we define a modification of the Knuth-Robinson-Schensted 
correspondence that suits to the generic symmetric case, but the definition 
of (standard) tableaux and the definition of the algorithms DELETE and 
INSERT are the same as in part (G).

Definition 3.3.5 A (standard) tableau A of shape r ^ r ^ , . . .  ,r u ,r u is called 
(standard) tableau of double shape, or (standard) d-tableau for short.

Let us now define a KRS type correspondence for standard d-tableaux. Let 
A be a standard d-tableau of shape r i ,T i,. . .  ,r u ,r u and set r = r̂  + • • • + ru . 
We define recursively a sequence of standard d-tableaux A r , . . . , Ai, Ao , where 
Ao = 0, and two sequences of integers ur , . . . , u Y and vr , . . . ,V i.  First set 
Ar = A. Then, for i = r , . . . , 1, let Ui be the maximum of the elements of A it 
and pi the largest index with the property that Ui can be found in the pAh 
row of A,. Since A, is a standard d-tableau the integer p, is even, say pi = 25,. 
Then

(1) Apply DELETE to input (Ai,pi) and let (A'^Vi) be the output.

(2) Cancel Ui from the tableau A' in the (pi — l)th  row to get A,.

Remark that whether the shape of A; is r 1; r i , . . . ,  rq , rq , then the shape of 
A- is 7 ,̂ T i,. . . ,  rS i, rSi — 1 ,. . . ,  rq , rq and Ui is in the (p̂  — l)th  row of A'. Finally 
Ai^i is a standard d-tableau of shape r b r i ,. . . , r Si — 1, r Sj — 1 ,... ,r q ,r q .

Then we define
^{A} = (  U l “ r  V

Note that the maximum of the elements of the (p; — l)th  row of A, which 
are less than or equal to Ui is the last element of this row. Therefore we can 
replace the steps (1) and (2) by the steps

(1*) Cancel Ui from the tableau A, in the p,th row to get the standard tableau 
A -

(2*) Apply DELETE to input (Ai,Pi — 1) and let (Aj_i,Ui) be the output.
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Remark again that whether the shape of Ai is r i,T i,. . .  ,r q ,r q , then the 
shape of A* is r ^ n , . . .  ,r S i,r Si -  l , . . . , r q ,r q .

It is obvious that Vi < Ui and that u \ , . . . ,u r . In order to show that 
the two-line array d>(A) satisfies the condition Vi > v,+i if Ui =  Ui+ b  we 
observe that Ui = ui+1 implies p<pi+ 1 . By using first (2*) and then (1), we get 
DELETE(>l*+ 1 ,p i + i -  1)=(A , vi + i) and DELETE(J4i ,pi)=(J4[,Di). Note that 
Pi < pi+ i — 1 since pi and p,+1 are even integers. Therefore we get Vi > v^i 
as a consequence of the following theorem of Knuth [51, Theorem 1*].

Theorem 3.3.6 Let B  be a standard tableau and i an integer such that we 
can apply DELETE(5,i). Then
(a) //D ELETE(fî,i) = (Bi,a) and DELETE(Bi,j) = (B2,b), then i > j  if 
and only if a < b.
(b) I / IN S E R T ^ ^ )  = (B i,j)  and INSERT(Bi, a) = {B,i), theni > j  if and 
only if a < b.

Consequently 0 defines a map between the set of standard d-tableaux and 
the set of the two-line arrays of positive integers

^1 

Ul

Ur
Vr

which satisfies the conditions u  ̂ < ■ 
Now we give an example.

< ur , Vi < Ui and Vi > Vi+ i if Ui = iii+ i.

Example 3.3.7 Let

A =

1
2
3
4

2
3
5
5

4

be a standard d-tableau. Then r = 5 and applying the algorithm to A we get

< 1 2 3 \ < 1 2 4 \

A = A5 =
2 3 4
3 5

, U5 =  5, p5 = 4 A  v5 = 3, A'5 = 2 3 5
3 5

< 4  5 / U  /

/  1 2 4 > /  1 2 5 \
(2) A 2 3 5 - n (!) A Al 2 3—  ̂ A\ — 3 , u4 =  5, p4 =  2 — > vn = 4, /14 = 3

\ 4  ; V  /
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A  Â2 = (  ! 3A  u2 =  3, p2 =  2 A  v2 = 3, A' = A  3  )

-^* Ai = ( _ ) , ui = 2, pi — 2 - H  vi — 1, A\ — ( 2 ) M  4 Q — 0,

and therefore
2
1

3 4 5 5 \
3 2 4 3 7

In order to prove that the correspondence defined above has an inverse we 
define a map ^  between the set of the two-Iine arrays of positive integers

which satisfies the conditions ui < ■ ■ ■ < ur , Vi < Ui and Vi > vt + i if Ui = 
Ui+ i, and the set of standard d-tableaux. We define recursively a sequence of 
standard d-tableaux A i , . . .  ,A r and a sequence of even integers p i , . . .  ,pr such 
that the entries of A, are the elements u i , . . .  ,U i,v i,. . .  ,Vi, the last element 
in the p,th row is u^ and all the elements of Ai which coincides with Ui are in 
the first pi rows.

Set

and for all i =  1 , . . . ,  r — 1 we proceed as follows

(1) Apply INSERT to input (A ,v l + ] ) and let (A*+ 1 ,pf+ i — 1) be the output.

(2) Add ui + i from the tableau A*+1 to the end of the (p, + l)th row to get

Remark that the row index pi+ i — 1 is odd since Ai is a standard d-tableau, 
and let us say pj+ i = 2si + i + 1. If the shape of A; is n ,  n , . . . ,  rq , rq , then the 
shape of A‘+1 is r b  . . . ,  rSi+] + l , r S1+1,. . . , r q ,r q .

At the end we define ip(U) = Ar .
In order to prove that the algorithm is well-defined we have to check that 

step (2) gives rise to a standard d-tableau and that the elements of Ai+ i which 
coincide with ui+ i are in the first p,+ i rows. It is sufficient to show that all the 
elements in the tableau A‘+1 which are equal to ui + i are in the first pj+ i — 1 
rows. When Ui < ui + i , this is obvious since the entries of Ai are less than or 
equal to Ui and Vj+ i is in the first row of A*+ 1 . When Ui = Ui+ i, we know that 
v i > f̂+1- Furthermore, if we apply DELETE to the input (Ai,pi), we get the 
output (A', Vi), where the tableau A' is obtained from A,_i by adding Ui at 
the end of the (pi — l)th row. Then we apply INSERT to (Aj,Vi+ i) and we
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38 3. Grobner bases and determinantal ideals

get (A^+ 1 ,Pi+ i — 1). By Theorem 3.3.6 we obtain pi+ i — 1 > pj. By induction 
we know that all the elements in the tableau Ai which are equal to u, are in 
the first pi rows, hence all the elements in the tableau ?1*+1 which are equal 
to Ui are in the first pi+ i rows. Therefore all the elements in the tableau 4*+1 
which are equal to Ui+ i are in the first p,+ i rows.

Theorem 3.3.8 The maps <f and V' are inverse to each other.

Proof. Let Â be a standard d-tableau and

^(A) = U = (  U1 ' ‘ 
\  Vi vr J

By induction on r we can prove that $(11) = A. The case r  =  1 is trivial, and 
suppose r > 1. Let 4 r _] be the standard d-tableau defined recursively in the 
definition of </>. Then

= K-, = ( “■ X I) ■
By induction we get that il)(Ur _i) =  Ar - i. Note now that the steps (1) and 
(2) in the definition of if and the steps (2*) and (1*) in the definition of </> are, 
respectively, inverse to each other, and we obtain that ^(U) = A. Analogously 
we prove that țl(4) = U. □

As in the generic case, we have found a one-to-one correspondence between 
standard d-tableaux and monomials of the set of indeterminates X  = {Xij : 
z,j = 1 ,2 ,. . . ,  1 < i < j}. We caii it the Knuth-Robinson-Schensted (KRS 
for short) correspondence for standard d-tableaux. Note that every monomial 
n « j  Xi]3 can be uniquely rewritten in the form XV1U1 •••X VrUr with Ui < 
■'' ^  uT, Vi < Ui and Vi > Ui+ i if Ui = Ui+ i. Therefore we have a one-to-one 
correspondence between the set of monomials in X  and the set of two-line 
arrays of positive integers with the above mentioned properties.

We can identify a product of minors of a generic symmetric matrix X  = 
(X^) with a d-tableau, that is, whenever M is a product of minors M = 
Mi ■ ■ ■ Mu with Mi = [an .. .  aiT i\bn . . .  bir i] an ri-minor, ri > ■ ■ ■ > ru , we 
consider M  as being the d-tableau A, where a n ,. . . ,  aiTi is the (2i — l)th row 
and 6 ^ ,. . . ,  biri is the 2ith row of A. It is obvious that the standard monomials 
correspond to the standard d-tableaux.

If we consider only standard d-tableaux and monomials whose entries, re­
spectively indeterminates come from an n x n generic symmetric matrix X , 
we get the following:

Theorem 3.3.9 KRS is a one-to-one correspondence between the set of stan­
dard d-tableaui on the set {1 ,... ,n} and the monomials in K[X],
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In the application of KRS to find Grobner bases of determinantal ideals 
we need the following result.

Lemma 3.3.10 Let A be a standard d-tableau, and a i , . . . ,a Tl its first row. 
I f we have KRS (A) =  XV1UI • • • X VrUr, ^ e n  f o r  every s = 1 , . . . ,  F! there exists 
a factor X VaiUai • • • X VaaUa3 of KRS (A) such that va i < < va , and uQ1 < 
• • • < ua 3 .

Proof. Let A iy i = 1 ,... ,r, be the standard d-tableaux occurring in the above 
described procedare of computing 0(yl). The proof goes by induction on r. 
The case r = 1 is trivial and suppose that r  > 1. The element vT is necessarily 
an element of the first row of A, say vr = Oj, 1 < j  < r^. We have

KRS (A -i)  = (  “ '

and the first row of Ar _j differs from that of A only in position j . Now 
we have to distinguish two cases. If s ^  j ,  then by induction there is a 
sequence «i < ••■ < a s such that vQ1 < ••• < vQj = as . If s = j, then 
we can consider ^  =  r in case j  = 1, and «i < ••• < aj~i < aj = r 
with vQ1 < ••• < va j_1 = a ^  in case j  1. Obviously we must have 
uQ1 < ' ■1 < U Q 3 . O

(A) Throughout this part we shall use the original Knuth-Robinson-Schensted 
correspondence defined by Knuth in [51]. In the pfaffian case, the Knuth- 
Robinson-Schensted correspondence has some important particularities. To 
be more specific, let P  = Tn • • • 7rr be a standard monomial, ^  a 2si-pfaffian; 
one can consider i/ as a standard tableau (it means that the ith column of 
the tableau has 2s, elements, Si > ••• > sr , the numbers in each row are in 
non-decreasing order from left to right, and the numbers in each column are 
in strictly increasing order from top to bottom) of shape S],. . . ,  sr , and then

KRS (i/) = «1 

vi

U2s

V is

where s =  si +  • • • + sr , and the pairs (ui,Vi) are arranged in non-decreasing 
lexicographic order from left to right. We should observe that in the above 
two-line array do not appear pairs (ui,Vi) with Ui = Vi, and once with a pair 
(ui,Vi) appears the pair ( v i , ^ ,  too. With this array we associate a monomial 
M = X aibl • • • X asb3 in K[X], such that the sequence b = (b !,...,b s ) is the 
sequence of those v̂  for Ui < Vi, and ai is the corresponding element u^

Define the width of a sequence to be the length of the longest decreasing 
subsequence; one observes that width (6) = l/2width (w). Let b^ > • • • > biT be 
a longest decreasing subsequence of b. If we take into account the relationship
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between the sequences v and b, we conclude that there exists a decreasing 
subsequence vn  > • • • > Vjr of v that can be extended to a subsequence of 
length 2r by gluing it to the subsequence Ujr > • ■ • > u^. On the other hand, 
if v^ > • • • > vi2r is a longest decreasing subsequence of v, then Uir < vir and 
uir+1 > vir+ 1 , otherwise we get decreasing subsequences of v of length greater 
than 2r. So, the sequence v^ > • • • > vir is a decreasing subsequence of b of 
length r.

The next step is to show that between the sequences v and b there exists a 
deeper connection, namely that the shape of P(b) =  INSERT(b), the tableau 
obtained by performing algorithm INSERT on the sequence b, is just s i , . . . ,  sr . 
The following result represents the first application of Greene’s theorem to 
KRS.

Proposition 3.3.11 Let v be a standard monomial of shape ($ i,. . . ,  sr ), and 
let b = (bi,. . .  ,bs) be the sequence obtained by performing KRS on v. If 
P(b) = INSERT(6), then the shape of P(b) is ( s i , . . .  ,s r ).

Proof. Let us recall that

KRS (/x) = «i «2s

V?s

where s = si + • • • + sr , and the pairs (u,,Vi) are arranged in non-decreasing 
lexicographic order from left to right. We break the sequence v — (y \,. . . ,  v2s) 
into two subsequences b = (vi : Ui < Vi), c = (vi : Ui > v^, and their terms are 
written in the order inherited from v. To the 2 x s matrix

(Ui \ 
bi )  ’

one associates the matrix B = (bij), where bij is the number of occurrences of 
the pair (i,j} in the matrix above. Analogously, to the 2 x s matrix

/  U i \
\  '

one associates the matrix C = (cif). Obviously, the matrix C is the transpose 
of B. Let (T |Q ') be the standard bitableau corresponding to the matrix 
B  in the KRS correspondence. Then to the matrix C  has to correspond the 
standard bitableau (Q '|F ); see Knuth [51, Theorem 3]. We get that P(b) = P 1 
and P(c) = Q’, so shape P(b) = shape P (c f Recall that d^v}  be the length of 
the longest subsequence of v which has no increasing subsequences of length 
fc + 1. From Theorem 3.2.2 we get that dk(v) =  2sj H—  • + 2sk- If one denotes 
shapeP(0 = S p .. .^ ', ,  then d^b) = d^^c) = s^ + ■ • • + s1 . It is obvious
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that 2dk(b) < dk (v). We prove that the converse is also true. If we take a 
subsequence of v which has no increasing subsequences of length A; + 1, this 
should be the union of k decreasing subsequences. These subsequences break 
up into two decreasing subsequences, one of them is a subsequence of b and the 
other one of c. So, we get a subsequence of b and a subsequence of c which are 
unions of at most k decreasing subsequences, therefore dk (b) + dk (c) > dk {v). 
This proves that 2dk (b) = dk (v), and therefore shapeP(6) = (s i ,. . . ,  sr ). □

3.4 Grobner bases of determinantal ideals
We start by recalling the definitions and some of the main properties of 
Grobner bases, inițial ideals and inițial algebras. The interested reader to 
know more on this topics is referred to Eisenbud [35] for the theory of Grobner 
bases, respectively to Conca, Herzog and Valla [27] for inițial algebras.

Let K  be a field and let R = K [X x , . . . ,X n ] be the polynomial ring over 
K  in the indeterminates X y ,. . . ,  X n . A monomial m oi R  is a product of 
indeterminates m  = n ^ 1 ' with ^  € N- A term of R  is an element of the 
form Am with A G K, A ^  0 and m  a monomial. We consider a total order T, 
denoted by < T, on the set of all the monomials in R. Then r  is a monomial 
order if it satisfies the following conditions:

(a) 1 < T m for all monomials different from 1.

(b) If mj < T m2 , then m^m^ <T mim^ for all monomials m i,m 2 ,m 3 in R.

Let us fix a monomial order T on the set of monomials in R. For a polynomial 
f  E R we define in T(/), the inițial monomial of /  with respect to T, as being 
the greatest monomial in the (unique) representation of /  as a sum of terms 
in R. If I  is an ideal of R, then in T(Z) the inițial ideal of I  is the ideal of R 
generated by the monomials inT( /)  for all f  E I. X subset F  of /  is called 
a Grobner basis of I  with respect to T whether the inițial ideal inT(/) equals 
the ideal of R  generated by in T(/) with f  6 F. If A is a F-subalgebra of R, 
then in T (A) the inițial algebra oi A is the F-subalgebra of R  generated by the 
monomials in T(/) for all f  E I. Obviously in T(A) is the semigroup ring F[5] 
of a suitable subsemigroup S  of N",
(G) As we mentioned we identify a product of minors of a generic matrix 
X  = {Xij} with a bitableau, that is, whenever p = 5i---(5u with 6, = 
[an,. . . ,  aiTi \bn,. . . , &jr j] an ri-minor, n  > ■•• > ru , we consider p as being the 
bitableau E = (A ,B), where A = (aij) and B = (bij) are tableaux. It is ob- 
vious that the standard monomials correspond to the standard bitableaux. In 
this part restrict our attention to standard bitableaux and monomials whose 
entries, respectively indeterminates come from an m x n generic matrix X .
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42 3. Grobner bases and determinantal ideals

With this convention, the straightening law on K[X] can be formulated as 
follows

Theorem 3.4.1 (a) The standard bitableaux form a K-vector space basis of

(b) The product of two minors tîi, <$2 € A(X) such that 6̂ 62 is not a standard 
bitableau has a representation

^^2 = 5 2  ^ ^ ^  *̂ ^  K, K ^  0,

where ^ i  is a standard bitableau and ți Si, 62 r̂  (we allow here that T]i 
is the empty minor).
(c) The standard representation of an arbitrary bitableau S, i.e. its repre­
sentation as a K-liniar combination of standard bitableaux, can be found by 
successive applications of the straightening relations in (b).

Let 5 G A(X) and I(X ,S) the ideal of K[X] cogenerated by 6. From 
Theorem 3.4.1 we deduce:

Corollary 3.4.2 The set of all standard bitableaux S with min (S) △(%, A)
is a K-basis of I(X , 6).

Set 6 =  [ a i , . . . ,a r |6 i ,. . . ,6 r ]. For systematic reasons it is convenient to 
set ar+ 1  =  m + 1 and 6r + i = n + 1. Let Jg be the set of all t-minors 
[a^,. .. , 0 ' ^ , . . .  ,b't ], t = l , . . . , r  + 1 which satisfy the conditions a' > a^ 
b* > bi for i = 1 ,... ,t  — 1, and a't < at or b't < bt .

Lemma 3.4.3 The set Jg is a minimal system of generators of I(X , 6).

Proof. Let 7 = [ap . . . ,  a'^b^,. . . ,  b's] be an arbitrary minor with the property 
that 7 ț  △ (X, 6). Then there exists an integer t < min {s,r + 1} such that 
a'( < at or b't < bt . Now we expand 7 with respect to the last s — t rows. 
So we may write it as a linear combination of products of (s — t)-minors and 
t-minors of Jg. Therefore Jg is a system of generators of I(X , 5). If Jg is not a 
minimal system of generators, then there exists 7' G Jg such that 7' =  X f i S i 
with 7' ^  Si € Jg and fi G K[X]. By the straightening law on A'[X] we 
may suppose that fi are standard monomials. Since 7' is a standard bitableau 
it must appear in the representation of some fiSi as a linear combination of 
standard bitableaux. In this case, by Theorem 3.4.1, we must have 7' < Si. By 
definition any two elements of Jg of different size are incomparable. Therefore, 
d eg M  =  deg(<M- So we obtain that deg(/j) = 0 and 7' = <5;, a contradiction.

From now on r will be a diagonal term order on the polynomial ring K[X], 
i.e. the inițial monomial of a minor 6 = [a1 ; . . .  ,a r |6 i,. . . ,  br ] is in T(i) =
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H i= i X a ib  ̂ the product of the elements on the main diagonal of 5. For in- 
stance, we can consider the lexicographic order induced by the variable order

^ 1 1  >  ^ 1 2  >  • • • >  ^ l n  >  A 21  >  ^ 2 2  >  • • • >  X2n >  • • • >  X m i >  ’ • • >  X m n .

In the following we show that the set Js is a Grobner basis for I(X , 6) with 
respect to the term order T . This result was first published by Herzog and 
Trung [45] and its proof was inspired by Sturmfels [61] who has proved, by 
using KRS, that the set of all r-minors is a Grobner basis for I r (X) (with 
respect to a diagonal term order). In fact, Sturmfels has observed that for 
an ideal I  of K[X] which has a K-basis of standard bitableaux, KRS (Z) is a 
K-vector subspace of K[X] that has two of the properties of an inițial ideal: 
it has a monomial basis and its Hilbert function is the same as the Hilbert 
function of I. If it happens that KRS (I) is contained (or contains) in in T(I), 
then we must have equality by the Hilbert function. To be precise, we have 
the following result (see Bruns and Conca [16], and Sturmfels [61]):

Lemma 3.4.4 Let I  be an ideal of K[X] that has a K-basis B of standard 
bitableaux (monomials), and let S  be a subset of I. Assume that for allE, € B 
there exists s £ S  such that in T(s)| KRS (S). Then S  is a Grobner basis of I 
and in T (I) = KRS (Z).

Proof. Let J  be the ideal generated by the monomials in T(s) with s E S. 
By hypothesis we have that KRS (Z) C J  C in T(Z). But KRS (Z) and I 
have the same Hilbert function since KRS is degree preserving. But it is 
well-known that in T(Z) and I  have the same Hilbert function. It follows that 
KRS (Z) = J = in T(I). □

Now we use Lemma 3.4.4 to prove:

Theorem 3.4.5 The set J  ̂ is a Grobner basis for I(X ,6) with respect to the 
term order T .

Proof. As we already know from Corollary 3.4.2, the set B of standard bita­
bleaux £  with the property that min (E) =  [an ,. . . ,  ain  |&n, • • •, &ir J  is not 
greater or equal than 5 is a ZGbasis of I(X ,ă). Set S  = J^ and KRS (S) = 
X U1vi • ’ • X UpVp. In the view of Lemma 3.4.4, we have to show that for a llS  G B 
there exists s G 5  such that in T(s)| KRS(E). The condition min (S) ^ A(X, 5) 
implies that either r] > r or r  ̂ < r and a lw  < aw or blw  < bw for some 
w = 1 ,. . . ,  r^  In the first case, by Theorem 3.2.1 we can find an increasing 
subsequence of v = (vn . . . ,  vp ) of length r^  Now it is easily to find an q - 
minor s E S  with the desired property. In the second case, we apply Lemma 
3.3.4 to get a factor XUoi„oi • • • X UawVaw of KRS (E) such that uO1 < • • • < uQw,
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vQi < • • • < vOw and uaw =  aiw . We can take s =  [uQ1 , • • •, uQw |vQ1, • ■ •, vQJ 
and obviously s e S. □

In particular we have:

Corollary 3.4.6 The set of all t-minors is a Grobner basis for It(X ) with 
respect to a diagonal term order.

(S) Let X  = (Xij) be a generic symmetric matrix. Similar to the generic 
case we identify a product of minors with a d-tableau, that is, whenever M  = 
Mi - ■ ■ Mu with Mi = [an . . . airj&n,. . . , bir i] an ri-minor, n  > ••• > ru , we 
consider M  as being the d-tableau A, where a n ,. . airi is the (2 i- l) th  row and 
^ih • • • > bir i is the 2zth row of A. In the following we consider only standard d- 
tableaux and monomials whose entries, respectively indeterminates come from 
an n x n generic symmetric matrix X. In this frame, the straightening law on 
K[X] can be formulated as follows:

Theorem 3.4.7 (a) The standard d-tableaux form a K-base of K[X].
(b) Let Mi = [an,. . . , ajrj&ii, • ■ •, &iri] € A(X),  ̂ =  1, • • •, s such that M = 
Mi ■ • • M s is not a standard d-tableau. Then M has a representation M = 
52 AiNi, Ai € K , Ai ^  0, where Ni are standard d-tableaux which satisfy the 
following condition: ifm in(N i) = [cu,. . .  ,CiS i\dn,. . .  ,diSi] and we set Ci = 
{^ii> ■ • •, Cis,}> di — {dn> • • •, diS i}, a, — {a,i, . . . ,  aiT i} and bi — {bn, • • •, bir i }, 
then in the lexicographic order on H the sequence c i,d i ,. . .  ,Cr,dT is less than 
or equal to every sequence obtained by permuting the elements a i,b i,. . .  ,a3,bs . 
(c) The standard representation of an arbitrary d-tableau, i.e. its representa­
tion as a K-liniar combination of standard d-tableaux, can be found by succes- 
sive applications of the straightening relations in (b).

Let a E H, a = { a i, . . .  ,« r } and I(X ,a )  the ideal of K[X] cogenerated 
by a. From Theorem 3.4.7 we deduce:

Corollary 3.4.8 The set of all standard d-tableaux A with min (A) A(X, a) 
is a K-basis of I(X , a).

As before, we set a r + i =  n + 1 and let Ja  be the set of all the doset t-minors 
[a i,. . . ,  at \bi,. . . , bt], t =  1 , . . . ,  r  +  1 which satisfy the conditions ai > ai, for 
i = 1 ,.. .  , t  — 1, and at < a t .

Lemma 3.4.9 The set JQ is a minimal system of generators of I[X , a).

Proof. Let start with an observation. If M = [a i,. . . ,  as |b i,. . . ,  bs ] is a doset 
minor of X  and we expand M  with respect to the last row, we may write 
it as a linear combination, with polynomial coefficients, of the doset minors
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[ai,. . . , as_i|&i,. . . ,b j,. . . ,  bs], j  = 1 , . . . ,  s (here~means that the correspond- 
ing index is missing).

Let M  = [ai,. . . ,  a^b i,. . . ,  6S] be an arbitrary doset minor with the prop- 
erty that M  △ (%, a). Then there exists an integer t < min {s, r  + 1} such 
that at < a t and a, > a  ̂ if i < t. Now we expand M  with respect to the 
last s — t rows. The above observation says that we can write M  as a linear 
combination of doset t-minors of Ja . So Ja is a System of generators of I(X , a).

If Ja is not a minimal system of generators, then there exists M' G JQ such 
that M' = ^Q iM i with M 1 ^  Mi E Ja and gi 6 K[X]. By the straightening 
law on K f /]  we may assume that gi are standard monomials. Because M' is 
a standard d-tableau it must appear in the representation of some giMi as a 
linear combination of standard d-tableaux. Now, by Theorem 3.4.7, we must 
have that the sequence of row indices of M' is less than or equal to that of Mi. 
On the other hand, any two elements of Ja  of different size have incomparable 
sequences of row indices. Therefore, deg(Af') = deg(Mj). So we obtain that 
deg(^i) = 0 and M' = Mi, and this is impossible. □

One considers again a diagonal term order r on the polynomial ring K[X], 
Thus the inițial monomial of a doset minor M = [ai,. . .  ,a r \bi,. . .  ,br] is 
in T(W) =  ny=i X ^ ,  the product of the elements on the main diagonal of 
M. There are various choices of T . For instance, we can consider the lexico- 
graphic order induced by the variable order

^ n  > ^12 > • • • > Xi„ > X22 > • • ■ > Xm  > ■ • • > Xn - i n > • • • > X n n .

Our aim is to show that the set Ja is a Grobner basis for I(X ,a )  with 
respect to the term order T . This result was proved by Conca [22] and it relies 
on Lemma 3.4.4, too.

Theorem 3.4.10 The set JQ is a Grobner basis for I(X ,a )  with respect to 
the term order T .

Proof. From Corollary 3.4.8 the set 13 of standard d-tableaux A with the 
property that min (.4) = {«i,. . . ,a t } is not greater or equal than a  is a K- 
basis of I{X , a).

Set S  = Jș and KRS (4) = XU1V1 • • • X UpVp. In the view of Lemma 3.4.4, 
we have to show that for 4  G 0  there exists s E S  such that in T(s)| KRS (4). 
The condition min (.4) ^ △(X, o) means that there exists w, w = 1 ,. . . ,  r + 1, 
such that aw < aw and we choose w minimal with respect to this property. 
By using Lemma 3.3.10 we get a factor XU ai„Qi • • ■ XMawI,OB of KRS (4) such 
that uQ1 < ••• < uQw, va i < ••• < vaw and vOw = aw . We can take s = 
[uQ1, . . . ,  uQw |vQ1, . . . ,  va J  and obviously s e S. □

In particular we have:
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46 3. Grobner bases and determinantal ideals

Corollary 3.4.11 The set of all doset t-minors îs a Grobner basis for It(X ) 
with respect to a diagonal term order.

(A) In this part we apply the same methods to deal with ideals generated 
by pfaffians of a fixed size. As in the previous section we identify a product 
of pfaffians of a generic alternating matrix X  = (Xij) with a tableau. If 
p = T̂  - ■ -nr with 7Tj a 2si-pfaffian, we consider p as a tableau; it means that 
the ith column of the tableau has 2s, elements, «i > • • • > sr , the numbers 
in each row are in non-decreasing order from left to right, and the numbers 
in each column are in strictly increasing order from top to bottom. Clearly 
the standard monomials correspond to the standard tableaux. In this part 
we confine to standard tableaux and monomials whose entries, respectively 
indeterminates come from an n x n generic alternating matrix X .

With this convention, the straightening law on K[X] can be formulated as 
follows

Theorem 3.4.12 (a) The standard tableaux form a K-vector space basis of 
K[X].
(b) The product of two pfaffians ÎT ] , ^  £ R(X) such that 7ri7r2 is not a standard 
tableau has a representation

7Ti7r2 = £  A ^ ,  Ai e K, A i^  0,

where țpli Z5 a  standard tableau and î <̂ 7Ti, 7T2 —< TJZ (we allow here that r̂  is 
the empty pfaffian).
(c) The standard representation of an arbitrary tableau P, i.e. its representa­
tion as a K-liniar combination of standard tableaux, can be found by successive 
applications of the straightening relations in (b).

Let 7F 6 I1(X) and I ^ X , ^  the ideal of K[X] cogenerated by 7r. From 
Theorem 3.4.12 we obtain

Corollary 3.4.13 The set of all standard tableaux P with min (P) ^ I^X , 7r) 
is a K-basis of I(X ,if).

This time we consider the term order T on the polynomial ring K[X] in- 
duced by the variable order

A h  > Ain _! > • • • > Xj2 > X2n > X2n -l > ' ’ - > %23 > • • • > An _]n .

With respect to T the inițial monomial of a pfaffian 7r =  [oi,. . . ,  a2r ] is in T (TT) = 
FI>=1 Aa ja2r-i + l ’

Unfortunately KRS does not behave so “nice” in the case of pfaffians as in 
the case of minors. For a given a pfaffian %, KRS does not map the standard
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monomial K-basis of I(X , TT) to the ideal generated by the inițial terms of the 
pfaffians that generate I ( X ,TV). We record here an example which illustrates 
that and gives an answer to a question raised by Herzog and Trung in [45, 
pg-26].

Example 3.4.14 Let n =  5, 7T = [1245], and P  the following standard tableau

An easy computation gives

KRS (P) = 1 2 3 4 5 \ 
5 4 1 2 1 / ’

and this two-line array is mapped further to the monomial X ^ X ^ ^ .  We 
get that the standard monomial P = [1235] [14] which belongs to a K-basis of 
I(X , ÎT) has the property that KRS (P) = X13A45X24 does not belong to the 
ideal generated by in T((), where £ is a pfaffian which is not greater or equal 
than 7r. In fact, only two pfaffians satisfy this condition, namely [1234] and 
[1235], and their inițial terms are X 14X23 and Xi5%23> both of them do not 
dividing KRS (*')-

In the view of Example 3.4.14 we restrict ourselves to the case of pfaffians 
of fixed size. Let J t denote the set of all 2t-pfaffians of X .

Theorem 3.4.15 The set J t is a Grobner basis of I t {X) with respect to the 
given term order r.

Proof. From Corollary 3.4.13 the set B of standard tableaux P with the prop­
erty that min (P) is not greater or equal than 7r = [1 ,..., 2t — 2] is a K-basis of 
It(X}. Set S  = J t and KRS (P) = X a ibx • • • X apbp . In the view of Lemma 3.4.4, 
we have to show that for P  G B there exists s S  such that in T(s)|KRS {P}.

The condition min (P) ^ I1(X, 7r) means that the length of the first column 
of P  is greater or equal than 2t. By Theorem 3.2.1 we obtain width (b) > t, 
where b = (b^,.. ., bPY Let b^ > • • • > bit be a longest decreasing subsequence 
of b. If we take into account the relationship between the sequences v and b (see 
Section 3.1, part (A)), we conclude that there exists a decreasing subsequence 
v ji > • • ■ > Vjt of v, respectively an increasing subsequence Ujt > ■ ■ • > un  of 
u. Take s = [uj1, . . . ,  Ujt , Vjt , .. .,0^] G S and apply Lemma 3.4.4. □
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Chapter 4

Powers and products of 
determinanta! ideals

4.1 Primary decomposition of the (symbolic) 
powers of determinantal ideals

(G) In this part we describe the primary decomposition of powers and, more 
generally, products of determinantal ideals. Let J = I t l (X) ■ ■ ■ I t u (X) with 
h  > • "  > ^ . Since I t^ X )  are prime ideals, only the ideals It{X) with t < t̂  
can be associated to J. Thus we have to find the primary components of J 
with respect to the ideals It(X ). The natural candidates are their symbolic 
powers. It turns out that the (symbolic) powers of determinantal ideals have 
/f-bases of standard monomials. The elements of the standard monomial K- 
bases of I t (X)W  are described in terms of certain functions 7t which have to 
be defined.

Given a sequence of numbers cr = ( s i , . . . ,  sp ) and a number t we define

p

7t (cr) =  5 ?  m a x (s i + 1 -  0). 
i=l

Then we extend the definition to products of minors ți by setting:

Tt (M) =  7i(ff)

where <7 is the shape of ți. The functions 7( were introduced by De Concini, 
Eisenbud, and Procesi [29] to describe the symbolic powers of It(X ) and the 
primary decomposition of the powers of It(X ). Actually, they defined the 
functions 7t only for shapes (in terms of the dual shape), but it is a triviality 
to show that both definitions coincide for shapes.
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4.1. Primary decomposition 49

Theorem 4.1.1 The ideal I t ( X ) ^  is the K-vector space generated by the 
standard monomials p with h (p ) > k, and it contains all products of minors 
p! with 7t(p') > k. One has

Z,(X)<‘>= £  i . x x y - i ^ x ) .
a=(sj ,...,sp ), 7t(tf)>k

Of course, the above description of I ^ X } ^  contains only finitely many 
summands. The simplest non-trivial case is t = k = 2 when we get I2 (X)W  = 
I2 (X )2 + I^ X ) .  If m  = 2 or n = 2, then I ^ X ^  = I2 (X y .  This phenomenon 
occurs for all ideals of maximal minors.

Corollary 4.1.2 Suppose that m < n. Then the symbolic powers of the ideal 
Im (X) of maximal minors coincide with the ordinary ones.

Proof. A monomial p has ^ ( p )  > k if and only if its first k factors have size 
exactly m. □

None of the results so far depends on the characteristic of field K. In the 
words of Bruns and Vetter, “quite surprisingly, the primary decomposition of 
products I t } ( X y  ■ ■ I ty X ) ,  in particular of powers I t (X y ,  can not be given 
without reference to the characteristic” . For instance, in characteristic 2 one 
has I i(X )I3 (X) ^  h ( X y  provided m ,n  > 4- see [21, Remarks (10.14)]. The 
next theorem was proved by De Concini, Eisenbud, and Procesi [29] in char­
acteristic 0, and generalized later by Bruns and Vetter [21, Theorem (10.9)].

Theorem 4.1.3 Let a = ( t i , . . .  , tu ) be a non-increasing sequence of integers 
and suppose that char K  = 0 or char K  > min (ti, m — ti,n  — ti) for i = 1 ,. . . ,  u. 
Then

I„(.X) ■ ■ ■ U X )  = 
i=l

is a primary decomposition. In particular, I tl (X) • • • I t u (X} is generated by the 
standard monomials p with 7i(p} > 7i(<r) for all i = l , . . .  ,t \ , and it contains 
all products of minors p' satisfying these conditions.

If we restrict to ordinary powers of determinantal ideals we have the fol- 
lowing:

Corollary 4.1.4 Suppose that char K  = 0 or char K  > min (t,m  — t,n  — t). 
Then

h ( x y  = Q / ^ x ) ^ 1- ^ 
i=l

https://biblioteca-digitala.ro / https://unibuc.ro



50 4. Powers and products of determinantal ideals

is a primary decomposition. In particular, It(X )k is generated by the standard 
monomials p with ^ (p )  > k(t + 1 — i) for all i = 1 ,... ,t, and it contains 
all products of minors p satisfying these conditions. Moreover this primary 
decomposition is irredundant if t < min (m,n) and k >  (w — l)/(w  — t) where 
w = min (m, n).

Note that the primary decomposition of It(X )k is irredundant for k 2> 0 
provided t < min (m, n). Furthermore, independently of the characteristic the 
right side of the equality in Corollary 4.1.4 is the integral closure of I t (X}k -, 
see Bruns [15, Theorem (1.3)].

De Concini, Eisenbud, and Procesi [29] also introduced another class of 
functions associated to a sequence of numbers a = (s i , . . .  ,s p ) defined by

t

i=l

(Actually, they also defined the functions 0 t only for shapes.) We extend the 
definition to products of minors p by setting:

0t(p) = 0 t (o)

where CF is the shape of p.
Each class of these functions defines a parțial order on the set of sequences 

of integers as follows: for o, A two such sequences we define

cr >^ A if and only if 0i(o) > A (A) for all i,

ff > 7  Aif and only if ^(cr) > 7,(A) for all i.

When o and A are shapes, it turns out that both parțial orders coincide; 
see De Concini, Eisenbud, and Procesi [29, Prop. 1.1].

Proposition 4.1.5 Let a and A be two shapes. One has a >@ X if and only 
if °  >7 A.

Proposition 4.1.5 suggests that we can replace the 7-functions by the 0- 
functions in the description of the standard bases of products and powers of 
determinantal ideals. For instances, for powers (the case we are interested 
most) we can state:

Corollary 4.1.6 Suppose that char K  = 0 or char K  > min (t,m  — t,n  — t). 
Then the ideal It(X )k has a K-basis consisting of all standard monomials p 
with 0k(p) > kt.
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Corollary 4.1.6 follows readily from the next lemma.

Lemma 4.1.7 Let A be a shape and k, t positive integers. Then 7;(A) > k(t — 
i + 1) for all i = 1 , . . . ,  £ if and only if ^ (A )  > kt.

Proof. Let a  =  ( t , . . . ,  i) be a shape such that t appears of k times. Then 
7iW  > fc(t-i+ l) if and only if7,(A) > 7l (cr), and by 4.1.5 we get&(A) > ^(cr) 
for all i. Now one takes Î  =  ^ in the last inequality and the necessity follows. 
For sufficiency we have to show that flkfA') > kt if and only if A (A) > ^ (a )  for 
all i < k, that is 0i(A) > it for all i < k. Set A = (A^ . . . ,  Au ) and suppose that 
there exist an i < k such that Ai H------ 1- Aj_i < (i — l)t and Ai H------ 1- A, > it. 
Then Aid------ 1- A,_i + \  < ( i -  1)1 + A,, therefore A; > t. On the other hand, 
Ai > • • • > A; and so we obtain Ai + • • • + A;_i > (i — l)t, a contradiction. □

(S) Let X  = (Xij) be a generic symmetric matrix over a field K  of charac- 
teristic 0. Set again J  = I t l (X) ■ ■ ■ I ^ X )  with ti > ■•■>  tu . As in part 
(G), we find out that the primary components of J  are the symbolic powers 
of the ideals It(X), t < t i . It happens again that the (symbolic) powers of 
determinantal ideals have A'-bases of standard monomials. The elements of 
the standard monomial A'-bases of I ^ X ^  are also described in terms of the 
functions 7t ; see Abeasis [1],

Theorem 4.1.8 The ideal I t (X)W  is the K-vector space generated by the 
standard monomials M with 'yt(M') > k, and it contains all products of minors 
M' with 7t(M') > k. One has

Remark that for n = 3 we obtain I2 (X y 2  ̂ = h ^ X ) 2 + h (X ). Thus we 
can not get a similar result to Corollary 4.1.2 for Zn -i(A ), the ideal of K[X] 
generated by all maximal minors of X .

(A) For an n x n generic alternating matrix X  we get similar results with 
respect to the primary decomposition of products (powers) of pfaffian ideals. 
First we show that the symbolic powers of pfaffian ideals have A'-bases of 
standard monomials, whose elements we also describe in terms of the functions 
7t . Recall that I t+ i(X ) denotes the ideal generated by all the (2t + 2)-pfaffians 
of X .

Next lemma is the key of the inductive proofs of results involving pfaffians.

Lemma 4.1.9 Let X  = (Xif), Y  = (Y^) be generic alternating matrices 
having sizes n x n and (n — 2) x (n — 2) respectively. Then the substitutions
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52 4. Powers and products of determinanta! ideals

^ij 1 Xi+2j+2 "I" (X jn - iX in  X in —iX jn )X n _ l n , i, j  — 1 ,.. .  ,n  2

yield a ring isomorphism

K[Y, X l n _ i ,  . . . , X n - 2 n - l>  ^ ln >  • • • , ^ n - l n ] [ ^ n - l n ]  ~  ^ [ ^ >  ^ n - l n L 

which map the extension of It(Y) to the extension of I t+ i(X ), t > 1. In 
particular, it inducea an isomorphism

p t (Y)[x ln ^ , xn_2n_ , j ln, x n _ln ][x-f ln ] ^p t+iW[z;Ai„L 
where xn - i n  denotes the residue class of X n _\n in Pt+i(X).

Proof. There exists an invertible matrix

/  1

C = O
- w .

\  ^ l n - l ^ n - l n

O

such that

ClXC =

O ... O
O ... O

O O \

O O

O 1
-1  O /

The Laplace type expansion formula for pfaffians yields that the pfaffian of 
the matrix C lX C  equals the product of pfaffian of X  with determinant of C. 
□

In order to distinguish between the pfaffians of X  and Y  we write [ ]% and 
[ ]y, respectively.

Lemma 4.1.10 (a) One has [ab  . . . ,  as ]y = [ai,. . . ,  as , n — 1, n]Xn 2ln 
(b) Set R  = K[X] and S = Then

h { X ) ^  = h W ^ S  n  R and I t+1 ( X ^ S  = I t ( Y ) ^ ,

for all t > 1.

Proof. (a) Use the invariance of pfaffians under elementary transformations. 
(b) The first equation follows easily from R C S C R it(x)- The second equation 
relies on the obvious fact that the extensions R C S  and K[Y] C S  commutes 
with the formation of symbolic powers. Then apply Lemma 4.1.9. □
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It is a triviality that the symbolic powers and the ordinary powers coincide 
for R{X). Thus we have Ik (X) C I ^ X ) ^  and Ik (X) £  R ( X ^ k + ^  for all 
1 < k  < [n/2]. Starting with this observation we can assert:

Proposition 4.1.11 One has

I t+ k_AX) G I t ( X ) ^  and I t+ k- ^ X )  ^  It(X ) ( k + l ) , 

for all 1 < k < [n/2] — t + 1.

Proof. By induction on t and using Lemma 4.1.10. □

Denote by I(t, k) the ideal generated by all the monomials v with the 
property that 7t(t/) > k. Then I(t,k )  G I t (X y k \  with equality for t =  1. 
In order to prove the equality for all t by induction, via Lemma 4.1.10, we 
have to know that I(t, k)S R R = I(t, k), or equivalently, that Xn _ ln  is not a 
zero-divisor modulo I(t,k).

Lemma 4.1.12 The standard monomials v such that 7( (i/) > k is a K-system 
of generators for I(t,k ). In particular, X n _\n is not a zero-divisor modulo 
I(t, k) i f t>  2.

Proof. It is enough to show that in a straightening relation

TTIO =  5 2  \  € K, A, 0

we must have 7t (p) > 07 (7^)+77 (TT2) for all u. By Theorem 1.0.14 we know that 
v has at most two factors and 1/ and ^^2  have the same degree as polynomials 
in the entries of X.

The second statement is an easy consequence of the first: if p is a stan­
dard monomial, then the product vX n _ ln  is a standard monomial too, and 
7t(i/Xn -in) = Tt(v) for all t > 2. □

Now we can conclude:

Theorem 4.1.13 The ideal I t (X)^k  ̂ is the K-vector space generated by the 
standard monomials v with 7t(^) > k, and it contains all products of pfaffians 
v' with 7f(p') > k. One has

a=(si ,...,sp ), 'l t(< r)> k

Similar to the generic case we can assert:

Corollary 4.1.14 The symbolic powers of the ideal It(X ) coincide with the 
ordinary powers if and only if t = 1 or 2t > n — 1.
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The primary decomposition of products of pfaffian ideals is very much alike 
to the primary decomposition of products of determinantal ideals.

Theorem 4.1.15 Let a = (ti,. ■ ■ , tu ) be a non-increasing sequence ofintegers 
and suppose that char K  = 0 or char K  > min (2tj, n — 2t,) for i = 1 , . . . ,  u. 
Then

it,m - ^ ( x )  = p\ii(.x'l^
i=l

is a primary decomposition. In particular, I tl (X) • • • I t^ X }  is generated by the 
standard monomials u with 7̂ (1/) > 7i(a) for all i = 1 ,... ,t i , and it contains 
all products of minors v' satisfying these conditions.

For ordinary powers of pfaffian ideals we have:

Corollary 4.1.16 Suppose that char A” = 0 or char A" > m in(2t,n — 2t). 
Then

i t (X )k =
i=l

is a primary decomposition. In particular, I ^ X ^  is generated by the standard 
monomials v with 7̂ (1/) > k(t + 1 — i) for all i = \ , . . , , t ,  and it contains 
all products of minors v' satisfying these conditions. Moreover this primary 
decomposition is irredundant if2t < n and k > (w - l) /(w - t)  where w = [n/2],

The primary decomposition of It(X )k is irredundant for k 3> 0 if 2t < n. 
Furthermore, independently of the characteristic the right side of the equality 
in Corollary 4.1.16 is the integral closure of I t (X )k -, see De Negri [32].

In order to prove the Theorem 4.1.15 first observe that the inclusion G 
is immediate: 7t(z) > 7t(cr) for all z G I t l (X) • • • I t u (X). For the converse 
inclusion we need the following lemma which is similar to [21, Lemma (10.10)]; 
see De Negri [32].

Lemma 4.1.17 Letr, s be integers withQ < r <  s — 1. Suppose that char K  = 
0 or char K  > min (2r + 2, n — (2r + 2)). Then IT(X }IS(X) G / r + 1 (A’)7s_j(X).

For a better understanding of Lemma 4.1.17, let us take a look to the first 
non-trivial case: h ^ X ) 2 = /^ D (I3 + I2 f, indeed we assume n > 6. To get that 
ly D (I3 + 12) G I2 (X )2 , we must show that I i(X )I3 (X ) G I2 (X )2 , and this is 
the key point in the proof of the theorem.

Proof of Theorem 4-115. In view of Theorem 4.1.13 it is enough to show that 
a product v =  7Ti • • • ^  is in I tl (X) • • ■ I t u (X ) if 7t p )  > 7t (cr) for all t. We
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use induction on u, the case u = 1 being trivial. If one of the pfaffians TF, 
has size ti, we have through by induction. If not, we split v into the product 
i^ =  7Ti • • - 7rg of pfaffians of size < ti, and P2 = V i  ‘ ' '^v of pfaffians of size 
> ti and continue as in [21, pg.127], applying Lemma 4.1.17. □

Finally, we assert a similar result to Corollary 4.1.6:

Corollary 4.1.18 The ideal It(X )k has a K-basis consisting of all standard 
monomials v with Ș k^) > kt.

4.2 Powers of ideals of maximal minors (pfaf­
fians)

(G) Let X  = (Xij) be an m x n generic matrix with m < n, I  = Im (X) the 
ideal of K[X] generated by all maximal minors of X , and T a diagonal term 
order on K[X], It is known that 1 ^  = P  for all non-negative integers i; see 
Corollary 4.1.2. We shall prove that the set of all products Ni ■ • - Ni, where 
Nj are the maximal minors, is a Grobner basis of the ith power of the ideal I 
for all i with respect to T . Set B = {p : p = âi ■■■ âp is a standard monomial, 
6 i , . .. ,6P are maximal minors, and p > i}, and S  = { ( r - - ^  : 6 , • • • ,6  a r e 
maximal minors}. The set 0  is a K-basis of / ';  see [21]. The main result of 
this part is the following:

Proposition 4.2.1 The set S  is a Grobner basis of P with respect to T , and 
therefore in T(/*) = in T(/)’ for all i.

Proof. According to Lemma 3.4.4 the proof will be done if we show that for any 
p E B there exists an s G 5  such that in T(s) |KRS (p). Let p E B, p = 6i ■ ■ ■ 6P 
a standard monomial with p > i, and

KRS (p) U1 U q Y
H i  Vq J

where q = mp, and v = (v i,. . .  ,v q) a sequence of positive integers. The 
length of the longest increasing subsequence of v is m; see Theorem 3.2.1. 
Recall that a*, (f) denotes the length of the longest subsequence of v which has 
no decreasing subsequences of length H I .  Any such sequence is obtained 
by taking the union of k increasing subsequences. In our case ai(v) = mi, 
therefore there exists a subsequence of v that can be written as ai W • • • Wa,, a 
disjoint union of increasing subsequences of v. Once again, ai(v) = mi implies 
that the length of the subsequences a i , . . .  ,aj is maximum, namely m, hence 
we get i increasing subsequences of v of length m. Set Oj = (v-ji,. .. ,Vjm )
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with Vji < • • • < Vjm . Then the corresponding top row elements are ordered 
as follows Uji > • • • > Ujm . Now we consider the maximal minors țj = 
[vji,. . .  ,Vjm \ujm , . . .  ,Uji], 1 < j  < i, and their product s =  ( r " G .  It is 
obvious that in r (s)|KRS {p). □

We now present an application of Theorem 4.2.1 to the rings K [X ]/Im (X y.
But first a general fact on regular sequences of indeterminates:

Lemma 4.2.2 Let r be a term order on a polynomial ring T  = X [X i,. . . ,  Xu] 
and J E T  an ideal. I f the indeterminates X i , . . .  ,X„ do not appear in the 
generators of in T (J), then the residue classes of X i , X v form a regular 
sequence in T /  J.

Proof. It is clear that in T(J  + (X J) = in T(J) +  (X J. Therefore it is enough 
to prove the assertion for v = 1. If it would be false, we could choose an 
element f  € T  \  J  such that X ^ f E J  and suppose that f  has the smallest 
inițial term among all the elements with these properties. From X \ f  E J we 
get X p n T (f) E in T (J). It follows in T( /)  G in T(J). Let g E J  such that 
in r (g) = in T(/), and set /i  = f  — g. We have f\  E T  \  J, X^fa E J, and 
in T(/i) < in T(/), a contradiction. □

From Theorem 4.2.1 and Lemma 4.2.2 we obtain:

Corollary 4.2.3 The residue classes of the indeterminates X ^ ,  X3i, X 3 2 , 

• • • 1 Xm i , . . . , X m m -1>  Xin _m_|_2 , X i n _ m 4-3, • • ■ > Xin , X2n—m+3> • • • > X2n , . . . , 
X m - i n  form a regular sequence on the ring K \X ]/P  for all nonnegative integers 
i.

Proof The above set of indeterminates is the complement of the set of inde­
terminates that appear in the generators of the inițial ideal of I. □

Remark 4.2.4 The regular sequence given above is not a maximal one even 
for i »  0. It has m(m — 1) elements, while min ie^depth K [X]/P  =  m2 — 1; 
see [46].

(S) Let X  = (Xij) be an n x n generic symmetric matrix, I  = / n _i(X) the 
ideal of X[X] generated by all maximal minors of X, and T  a diagonal term 
order on X[X].

We shall prove that the set of all products N \---N i, where Nj are the 
maximal minors, is a Grbbner basis of the ith power of the ideal I  for all i 
with respect to r. Set B = {M  : M  = a i- - -a p is a standard monomial, 
a-[,... ,a p are maximal minors, and p > i}, and S  = {fi • • • & : ( i v > ( i  are 
maximal minors}. The set 0  is a X-basis of P; see [1]. The main result of 
this part is the following
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4.2. Powers of ideals o f maximal minors (pfaffians) 57

Proposition 4.2.5 The set S  is a Grobner basis of I' with respect to T , and 
therefore in T (P) = in T(7)’ for all i.

Proof. In order to use Lemma 3.4.4 we have to show that for any M  E B 
there exists an s G <S such that inT(s)|KRS (M). Let M  E B, M  = a^ ap a 
standard monomial with p > i, and

KRS (M )=  (  U1 ’ ’ ’ V 
\  Vi vq J

where q = (n — l)p, and v = v^,. . .  ,v q a sequence of positive integers. The 
length of the longest increasing subsequence of v is n — 1; see Theorem 3.2.1. 
Therefore we must have ai(v) = (n—l)i, therefore there exists a subsequence of 
v that can be written as ^U - • • t+Jcr*, a disjoint union of increasing subsequences 
of v. Since ai(v) = (n—l)i we get that the length of the subsequences Oi,... ,a, 
is n — 1, hence we get i strictly increasing subsequences of v of length n — 1. 
Set Oj = (v ji,. . .  ,Vjn ^i) with v^ < ■■■ < Vjn _\. Then the corresponding 
top row elements are ordered as follow Uji > ■ ■ ■ > Ujn _\. Now we consider 
the maximal minors țj = [vji] ...,V jn _1|ujn _1,...,U ji], 1 < j  < i, and their 
product s = (j •••^ . It is obvious that in T(s)|KRS (M). □

(A) Let n = 2r + 1 be an odd number, X  an n x n generic alternating matrix 
and I  = 7n _i(X) the ideal of K[X] generated by all maximal pfaffians of X . 
We shall prove that the set of all products N x - ■■ Ni, where Nj are the maximal 
pfaffians, 1 < y < n, is a Grobner basis of the ith power of the ideal I, for all 
i (with respect to the monomial term order T introduced in chapter 3).

In this frame we have that 1 ^  = P  for all non-negative integers i; see 
De Negri [32]. Set B = {v : v =  7Ti • • • 7rp is a standard monomial, 7T],. . . ,  7rp 
are maximal pfaffians, and p > i}, and S  = {(i • • • & : £i, • • • > & a r e  maximal 
pfaffians}. It is known that B i s a  A-basis of P-, see Theorem 4.1.13. The 
main result of this part is the following:

Theorem 4.2.6 The set S  is a Grobner basis of P  with respect to T , and 
therefore in T(P) = in r (I)‘ for all i.

Proof. According to Lemma 3.4.4 the proof will be done if we show that for any 
p E B there exists an s G 5  such that in T(s)|7<RS(/z). Let p E B, p = 8̂  ■ ■ ■ dp 
a standard monomial with p>  i, and

KRS(p) = (  U i ’ ’ ’ “2’ V 
\  ^i v2q J

where 2q = (n — l)p, and v = V i,... ,v2q a sequence of positive integers. 
The length of the longest strictly decreasing subsequence of v is n — 1; see
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Theorem 3.2.1. Let dk(v) denote the length of the longest subsequence of v 
which has no increasing subsequences of length A; + 1. Any such sequence 
is obtained by taking the union of k decreasing subsequences. In our case 
di(v) = ( n — l)i, therefore there exists a subsequence of v that can be written 
as <7i W • • • W <7,, a disjoint union of strictly decreasing subsequences of v. But 
di(v) = (n — l)z implies that the length of the subsequences <71 ,...,<7i is 
maximum, namely n — 1, hence we have got i strictly decreasing subsequences 
of v of length n — 1. Set Oj = (uji,. . . ,  vj n - i)  with Vji > ■ ■ ■ > vj n -i- Then 
the corresponding top row elements are ordered as follow u ^  < • • • < Ujn _\. 
Now we consider the pfaffians țj  = [uji,. . . ,  Ujr , Vjr , . . . ,  Vj^], 1 < j  < i, and 
their product s = fi • • ■&• It is obvious that s E S  and inT (s)|KRS (p). □

From Theorem 4.2.6 and Lemma 4.2.2 we get:

C orollary 4 .2 .7  The residue classes of the indeterminates X 12, • • •, Xin _2 ,
^ 23>  • • • , ^ 2 n  - 3 ,  ^ 34>  • • ^ 3 n - 4 ^ 3 n ,  ^ 45>  ^ 4 n - 5 , ^ 4 n - 1, • • • , -^ rr+ 4 ,

■ • • i ^frm ^ r + l r + 3 ,  • • • , -^ r+ ln >  -^ r+ 2r+ 3 , • • • > -^r+2n> • • • ; ^ n - l n  foTTn a regular 
sequence on the ring K [X]/P  for all nonnegative integers i.

Proof The above set of indeterminates is the complement of the set of inde­
terminates that appear in the generators of the inițial ideal of I. □

R em ark 4 .2 .8  The regular sequence given above is not a maximal one even 
for i »  0. It has (n — l)(r — 1) elements, while min i e ndepth K [X]/P  = 
n(r — 1); see [46].

4.3 Grobner bases of powers of determinantal 
ideals

(G) For ordinary monomials M  of K[X] we define

^t{M) =  sup{7((/i) ; / i i s a  product of minors of X  with in T (/i) = M},

/3t (M) =  sup{/3t (/i) : g i s a  product of minors of X  with in ^(/J) =  M}, 

where inT (/) denotes the inițial term of a polynomial f  with respect to a 
diagonal term order T . We will show that the functions 7f , respectively 0t 
describe the inițial ideals of the symbolic, respectively ordinary powers of 
ItfX Y  We warn the reader that in general there does not exists a product of 
minors p with in T(M) = M  and îtfM )  = 7t(^) for all t. For instance, take the 
monomial M  =  X 1 1 X 1 3 X 2 2 X 3 4 X 4 3 X 4 5 ;  see Example 4.3.7.

Schensted’s theorem 3.2.1 can now be expressed in terms of the functions 
7t and 7t as follows:

https://biblioteca-digitala.ro / https://unibuc.ro



4.3. Grobner bases o f powers o f determinantal ideals 59

Corollary 4.3.1 For a standard monomial p one has

MM) 0 i f  and only i f  7t (KRS(^)) /  0.

Proof. Write p = 5 i---5 u with 5, an 7\-minor, i = l , . . . , u ,  KRS(/J) = 
Xuvi • • • ^ u rvr , and v = v i , . . . , v r . Then from Theorem 3.2.1 M l1) =  0 if 
and only if 77 < t. On the other hand, 7((KRS {p)) =  0 if and only if M y ) = 0 
for all v a product of minors with in r (p) =  M, and this is equivalent with 
77 =  a ju )  < t. □

This suggests the following:

Theorem 4.3.2 Let p be a standard monomial. Then

MM) = 7t (KRS (p)) for all t> 0 .

It turns out that the Theorem 4.3.2 can be reduced to a theorem on 
the decomposition of sequences of integers into increasing subsequences. Let 
v = v i , . . . , v r be a sequence of integers. A decomposition g of v into in­
creasing subsequences, an inc-decomposition for short, is said to have shape 
a = M , .. .  ,s u ) if its ith subsequence has length »;. We set

7t(j) =  M a ) and M v ) = s up{7t(s) : 5 is an inc — decomposition of v},

M d) = M G) a n d M v ) =  S U P{A(?) : 5 is an inc — decomposition of v).

Inc-decompositions are crucial for our investigation since they describe re- 
alization of a monomial as an inițial monomial of a product of minors. Con­
sider M  = KRS (/x) = Xu ,„i •••X UrUr with ui < ■ ■ ■ < ur and v, > Vi+ \ 
whenever Ui = Uj+ 1 . A representation of M  as in T(p) with v a product of 
minors of shape (s i ,. . . ,  su ) is equivalent to an inc-decomposition of the se­
quence v = (v i , . . . ,v r ) of shape ( s i , . . . , s u ). Consequently M M ) = M v )y 
respectively M M ) = M M

For any sequence of integers v =  (v i,. . .  ,v T), let P  = INSERT(v) be the 
standard tableau determined by v, and a = M , . .. ,s u ) its shape. Then the 
equality MM) = M a ) *s  Ju s t an interpretation of Greene’s theorem in terms 
of /?-functions. We also have a similar statement for 7-functions.

Theorem 4.3.3 Let v = M , . . . , v r ) be a sequence of integers. Let P = 
INSERT(v) be the standard tableau determined by v, and a = (s i , . . .  ,s u ) its 
shape. Then M a ) =  M v )-

Proof. Note that M a ) represent the number of elements in the columns of P 
of index greater or equal than t. But this is nothing but the sum of the lengths
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of the columns of P  of index greater or equal than t. Now we can show that 
7t(f) > w if and only if 0k(p) > (t — 1)^ +  w for some k, 1 < k < t. □

In spițe of the Theorem 4.3.3, in general we cannot get an inc-decomposi- 
tion of a sequence v with the same shape as INSERT(v). For the sequence 
v = (4,1,2,5,6,3) in Example 3.1.6 the shape of INSERT(v) is (4,2), but 
v has no inc-decomposition of shape (4,2). However the shapes (4,1,1) and 
(3,3) occur, and this is sufficient for the invariance of the functions 7t .

Now we are ready to describe Grobner bases and/or inițial ideals of (sym- 
bolic) powers, and more generally products of determinantal ideals.

Theorem 4.3.4 The inițial ideal inT(I (̂ )  is the K-vector space generated by 
the ordinary monomials M  with yt(M) > k. In particular, a Grobner basis of 
It(X )W  is given by the set of bitableaux S with 7t(S) = k and no factor of 
size less than t.

Proof. Once again we shall use Lemma 3.4.4. Set S  be the set of the products 
of minors p with 7t(p) > k. By virtue of Theorem 4.1.1 we know that the 
set B of bitableaux S with 7t(S) > A: is a K-basis of I t ( X ) ^ ,  and moreover 
S  Q I ^ X ^ -  Let E G B. Then by Theorem 4.3.2 we get that there exists 
s S  with in T(s)|KRS (S), and thus the set 5  is a Grobner basis of I t (X)W .

It remains to show that the inițial term of any product of minors p with 
7t(p) > A: is divisible by the inițial term of a product of minors p' with no 
factor of size less than t and with ^ (p ') = k. If the monomial p has factors 
of size less than t, we simply get them rid. On the other side, if 7((/i) > A: we 
then cancel 7t(^) — ^ places in the bitableau with the corresponding entries 
and thus get p '. □

In order to describe the inițial ideal of a product of determinantal ideals 
we need the following:

Lemma 4.3.5 Let I  and J  be homogeneous ideals in K[X] such that in r (7) = 
KRS (7) and in T (J) = KRS(J). Then in T (I) + in T(J) =  inT (7 + J} = 
KRS (I + J) and in T(7) D inT(J) = in T(I n  J) =  KRS (7 D J).

Proof. One has

KRS (7 +  J) = KRS (7) +  KRS (J) = in T (7) + in T(J) C in T (7 + J),
KRS (7 O J) = KRS (7) D KRS (J) = inT (7) D in r (J) D in T(7O J), 

and apply the Hilbert function argument. □

Application of Lemma 4.3.5 and Theorem 4.1.3 yields
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Theorem 4.3.6 Let a  = ( t i , . . .  , t u ) be a non-increasing sequence of integers. 
Set gi = 7i(cr) and suppose that char K  = 0 or char K  > min (ti,m  — ti,n  — ti) 
for i = 1 ,... ,u. Then

in ,( /„ (X ) ■ ■ - /..(X J) =  Q in ,(f ,(X )< « ^ 
i=l

In particular, in T(/(1(A) • • • I t u {X)) is generated, as a K-vector space, by the 
monomials M with îi(M ) > 7i (cr) for all i = l , . . . , i i .

As Bruns and Conca [16] remarked, the Theorem 4.3.6 is satisfactory if we 
want to determine the inițial ideal of the product I t i (X) • ■ • I tu (X). However, it 
does not teii us how to find a Grobner basis. The natural guess that a Grobner 
basis of Ih (X ) • • ■ I t u (X) is given by the products of minors, standard or not, 
which are in I t l (X) ■ • • I tu (X), proves to be wrong.

Example 4.3.7 Suppose that m ,n >  4, char K = 0 or > 3, and consider the 
ideal I2 (X )I4 (X). This ideal has the following primary decomposition:

I2 (X )I4 (X) = i , ( X ^  n  I2 ( X ) ^  n  / 3 W (2) n  IA(X).

The monomial M = A n X 1 3 X 2 2 X 3 4 X 4 3 X 4 5  has 7I (M) = 6, ^ (M )  = 4, 
73(M) = 2, ^ (M ) = 1, hence M  G in T(I2 (X )I4 (X)). The products of minors 
of degree 6 in I2 (X )I4 (X) have the shapes (6), or (5,1), or (4,2). The only 
inițial term of a 4-monomial that divides M  is An A22A34A45, but the remain- 
ing factor A13A43 is not the inițial term of a 2-monomial, and does not belong 
to I2 (X). We can now deduce that M  is not the inițial term of a product of 
minors from I2 (X )I4 (X).

Nevertheless, if we restrict our attention to powers of determinantal ideals, 
we get an optimal result.

Theorem 4.3.8 Suppose that char .A = 0 or char K  > m in(t,m  — t,n  — t). 
Then the inițial ideal in T ( lf)  is the K-vector space generated by the monomials 
M with Pi{M) > kt. In particular, a Grobner basis of It(X )k is given by the 
products of minors p such that p has at most k factors, ^ ( p )  = kt, and 
deg(^) = kt. Therefore It(X )k has a minimal system of generators which is a 
Grobner basis.

Proof. Let S  be the set of the products of minors p with (3k{p) > kt. By 
virtue of Corollary 4.1.6 we know that the set B of standard bitableaux E 
with ^ (E )  > kt is a A-basis of I t (X )k , and moreover 5  C I t (X )k . Greene’s 
theorem 3.2.2 implies that for any standard bitableau E G B there exists p E S 
with in r (//)|KRS (E), and thus the set 5  is a Grobner basis of I t (X )k .
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It remains to show that the inițial term of any product of minors p with 
0t(p) > kt îs divisible by the inițial term of a product of minors p' with at 
most k factors, deg(//') = kt and flt(p') = kt. If the monomial p  has more 
than k factors, we skip some of the shortest minors. If 0t(p) > kt we then 
cancel /3t(p) — kt places from the first k rows of the corresponding bitableau. 
At last, if deg(/i) > kt, we then cancel deg(/i) — kt places from the last rows. 
□

(A) Despite its “not so nice” behaviour in the case of pfaffians, KRS behaves 
well with respect to the shapes. In our case it means that the corresponding 
7- functions are still invariant under KRS, and we can prove a combinatorial 
result similar to Theorem 4.3.2.

Due to the switch we made in the definition of standard tableaux in this 
case, we must define a suitable analogous to the ^-functions. For a shape 
cr = ( s i , . . . ,  sp ) we consider

0 * M  =  P t ^ * )

where a* is the dual shape of <7, and we extend this to products of pfaffians v 
by setting:

where a is the shape of v. For ordinary monomials M  of K[X] we define

7f*(M) =  sup{7t(i/) : 1/ is a product of pfaffians of X  with in T(i/) = A/},

=  sup{/3t*(p) : 1/ is a product of pfaffians of X  with in T(z/) =  Af}, 

where in T (/) denotes the inițial term of a polynomial f  with respect to the 
term order T  introduced in Chapter 3.

Now we can state the following:

Theorem 4.3.9 Let v be a standard monomial. Then

T t^ )  = 7t(KRS (1/)) for all t > 0.

This theorem, though similar to the Theorem 4.3.2, has a quite different 
proof. As in the previous part (G), the Theorem 4.3.9 can be reduced to a 
theorem on the decomposition of sequences of integers into decreasing subse- 
quences. Let v =  (v i,. . . ,  vr ) be a sequence of integers. A decomposition g of 
v into decreasing subsequences, an dec-decomposition for short, is said to have 
shape a = ( s i ,. . . ,  su ) if its ith subsequence has length Si. We set

y^g) =  7i(<̂ ) and ^ ( f ) = sup{7( (g) : ^ is an dec — decomposition of v}, 

/3t(g) = & t ^  and (3*(v) = sup{/3t‘ (j) : j i s a n  dec — decomposition of u}.
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Consider M  =  KRS (P) = X a^ x • • • X aaba with a, < bi for alH = 1 ,. . . ,  s, 
Qi < • • • < Os and b, < bi+ i whenever ai =  aj+ i. Then there exists v’ a product 
of pfaffians of shape (s i , . . . ,  sr ) with in T(i/) = M if and only if the sequence 
b = (b i,.. .,b s) admits a dec-decomposition into decreasing subsequences of 
shape ( s j , . . . ,  sr ). Therefore -%(Af) = yt(b) and (^(M ) = ^(b}.

Analogous to inc-decompositions, dec-decompositions describe realization 
of a pfaffian as an inițial monomial of a product of pfaffians. Consider M  = 
KRS (^) = Xm»! •■•^M r with u i ^  ^  u r and v i > ^+i whenever
Ui =  Ui+ i. A representation of M  as in T(p) with v a product of pfaffians 
of shape ( s i , . . . , s u ) is equivalent to a dec-decomposition of the sequence 
v = ( v i , . . . ,v r ) of shape (s i ,. . . ,  su ). Consequently ■yt(M) = ^ (v ), respec- 
tively f t(M )  = ft(v ).

For any sequence of integers v = (vi, . . . , vr ), let P  = INSERT(v) be the 
standard tableau determined by v, and a =  ( s i , . . . , s u ) its shape. Then the 
equality ^ ( v )  = flt(°) *s  j u s t a n  interpretation of Greene’s theorem in terms 
of ^ ‘-functions.

Quite similar to Theorem 4.3.3 we can prove the following:

Theorem 4.3.10 Let b = (b i,...,b f) be a sequence of integers. Let P = 
INSERT(6) be the standard tableau determined by b, and a = (s i ,. . .  ,s u ) its 
shape. Then ^ ( CF) = 7t(b).

It is now obvious that the Theorem 4.3.9 follows immediately from the 
Theorem 3.3.11.

Now we describe Grobner bases for the inițial ideals of (symbohc) powers.

Theorem 4.3.11 The inițial ideal in T (l[k ^  is the K-vector space generated 
by the ordinary monomials M with jtfM ) > k. In particular, a Grdbner basis 
of I t ( X ) ^  is given by the set of tableauz P with 'Yt(P) = k and no factor of 
size less than t.

Proof. Just mimic the proof of Theorem 4.3.4. □

For products of pfaffian ideals we can describe their inițial ideals as follows:

Theorem 4.3.12 Let a = ( t i , . . . , t u ) be a non-increasing sequence of inte­
gers. Set gi =  "}i(cr) and suppose that char K  = 0 or char K  > min (2ti, n — 2ti) 
for i = 1 ,... ,u. Then

in ,( /1, ( X ) - / 1. ( X ) ) = n i n , ( I 1(X ) l’J ).
i=l

In particular, in T (It l (X) ■ ■ • I t v (X)) is generated, as a K-vector space, by the 
monomials M  with îi(M ) > 7i(cr) for all i = 1 , . . . ,  ti.
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Similarly to the generic case, we can say that the natural guess that a 
Grobner basis of I t^ X )  • • ■ I t u (X) is given by the products of pfaffians, stan­
dard or not, which are in I t l (X) ■ ■ ■ I tu (X), proves to be wrong.

E xam ple 4 .3 .13  Suppose that n = 9, char K  =  0 or > 3, and consider the 
ideal I2 (X )I4 (X). This ideal has the following primary decomposition:

I2 ( x ) i 4 ( x )  = h ( X ^  n  i 2{ X ^  n  I3 ( X ) ^  n  I4 (X).

The monomial M  = X i9X 2SX 67X nX 36X 45 has 7I (M) =  6, 72 (M) = 4, 
73 (Af) = 2, 74(M) =  1, hence M  e inT ^I^X ^I^X )). The products of pfaf­
fians of degree 6 in I2 (X )I4 (X) have the shapes (4,2), or (4,1,1), or (3,3), 
or (3,2,1), or (2,2,2). The only inițial term of a 8-pfaffian that divides M  is 
^ 1 9 -^ 2 8 ^ 3 6 ^ 4 5 ,  but the remaining factor X ^ X ^  is not the inițial term of a 
4-pfaffian, and does not belong to I2 (X). Since the cases (3,2,1) and (2,2,2) 
are obvious, it remains the case of shape (3,3). In this case the only possi- 
bility for M  is to be equal to the product of the inițial terms of [126789] and 
[134567]. But the product of this two pfaffians does not belong to I2 (X )I4 (X). 
We can now deduce that M  is not the inițial term of a product of pfaffians 
from I2 (X }I4 (X}.

However, if we restrict to the powers of pfaffian ideals, we can provide a 
Grobner basis.

T heorem  4 .3 .14  Suppose that char K  =  0 or char K  > min (2t,n — 2t). Then 
the inițial ideal in T (Jf) is the K-vector space generated by the monomials M 
with Ăi^M) > kt. In particular, a Grobner basis of It(X}k is given by the 
products of pfaffians o such that o has at most k factors, ^ ( i/)  = kt, and 
deg(y) = kt. Therefore I t (X )k has a minimal system of generators which is a 
Grobner basis.
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C hapter 5

Simplicial Complexes
A ssociated to  D eterm inantal
Ideals

The goal of this chapter is to show how one can use the theory of Grobner 
bases and the simplicial complexes in proving that the determinantal rings are 
Cohen-Macaulay and in the computation of the multiplicity (resp. a-invariant) 
of determinantal ideals. Herzog and Trung [45], respectively Conca [22] found 
a formula for the multiplicity of Rt(X) and Pt [ X \  respectively S t (X). The 
computation of the a-invariant was done by Bruns and Herzog [18] for Rt(X) 
and Pt(X), and by Conca [23] for S t (X).

It turns out that all these results can be proved by Grobner deformation, 
that is, by the study of the rings K [ I ] / in T(/(X ,i)). By Theorem 3.4.5 we 
know that in T(/(X, 6)) is a square-free monomial ideal. The main feature of 
such ideals is that their residue class ring is the Stanley-Reisner ring of some 
simplicial complex.

5.1 Simplicial complexes
Let us describe the approach by recalling the main properties and notions to 
be used in the sequel. It is well known (see, for instance, Bruns and Herzog 
[19]) that the Hilbert function of a homogeneous ideal Z in a polynomial ring 
R  coincides to the one of the ideal in T (Z) generated by the leading terms of the 
polynomials in I  with respect to a monomial order T . If in T(I) is generated 
by square-free monomials, which is the case for determinantal ideals, one can 
associate with in T(Z) a simplicial complex △ such that Z2/inT(Z) is the Stanley- 
Reisner ring associated to △. To enter the details, let us say that a simplicial 
complex on a set of vertices V  = { 1 ,..., n} is a collection △ of subsets F  of V 
such that F € & whenever F  C G for some G G △, and such that {i} € △ for
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66 5. Simplicial complexes associated to determinanta! ideals

alH =  1 ,. . . ,  n. Starting from here, we associate to any square-free monomial 
ideal Z in a polynomial ring R = K [X i,. . . ,  X n ] a simplicial complex

A =  { F C { l , . . . , n } : X F ^Z}

where X F = I lig F ^ i' Conversely, to any simplicial complex A we associate a 
square-free monomial ideal I  by setting

I = (XF : F $  A).

The Stanley-Reisner ring of A is the graded /f-algebra F[A] = K [X]/I. An 
element F  G A is called a face. If we denote by |F | the cardinality of F, then 
dimF, the dimension of F, is |F | — 1, and the dimension of A is maximum of 
dim F for all F  G A. Set d — 1 = dim A. Then we denote by fi the number 
of i-dimensional faces of A. The d-tuple /(A ) = (/0 , • • • >/d-i) is called the 
f-vector of A. The maximal elements of A under inclusion are called facets, 
and denote by F^ the set of facets of A. The simplicial complex A is said 
to be pure if all its facets have the same dimension, i.e. d im F =  dimA for 
all F  G F^. As we will see soon, the study of the homological properties and 
the determination of the numerical invariants of F[A] reduces to the analyze 
of the combinatorial properties and invariants of A. Here is the first example 
involving the Krull dimension and the multiplicity of K[A]:

Proposition 5.1.1 We have that dimK[A] =  dim A + l, and the multiplicity 
e(/f[A|) equals f ^ ^  the number of facets of maximal dimension of X.

Proof. See Bruns and Herzog [19, Chapter 5]. □

(We shall see that in the case of determinantal ideals the facets can be char- 
acterized as families of non-intersecting paths.)

The Hilbert series of the Stanley-Reisner rings can be expressed in terms 
of the /-vector of A:

Proposition 5.1.2 For a simplicial complex A of dimension d — 1 > 0 with 
f-vector (fa ,. . . ,  fd-i), the Hilbert series of the associated Stanley-Reisner ring 
is given by

A distinguished class of simplicial complexes which gives rise to Cohen- 
Macaulay rings is that of shellable simplicial complexes. A pure simplicial 
complex A is called shellable if its facets can be given a total order F i , . . . ,  Fm 
such that the following condition holds: for all i and j  with 1 < j  < i < m 
there exists v e Fi \  Fj and <: G { l , . . . , i  -  1} such that F i\F k  = {v}. A
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total order of the facets which satisfy this condition is called a shelling of A. 
The advantage of using shellable simplicial complexes is given by the fact that 
these are suitable for inductive arguments. For instance, the next result can 
be proved by induction on the number of facets of A:

Theorem 5.1.3 Let A  be a shellable simplicial complex. Then the Stanley- 
Reisner ring A'[A] is Cohen-Macaulay.

Recall from Bruns and Herzog [19, Corollary 4.1.8] that the Hilbert series 
of a homogeneous K-algebra R  (homogeneous means that R  is generated, 
as K-algebra, by elements of degree 1) of Krull dimension d has the form 
HR (Z) = h (z)/(l — z)d where h(z) = ^ h iZ 1 G Z[z] and h(l) /  0. Bydefinition, 
the a-invariant of R  is given by a(R) = degh -  d. When R = K[A], the finite 
sequence of integers h(A) = (h0 , h^,...)  is said to be the h-vector of A, while 
a(R), denoted by a(A), is called the a-invariant of A.

For a shellable simplicial complex A with shelling F^,. . . , Fm  we set 

c(Fi) = {v € Fi : there exists k < i such that Fi \  Fk = {v}} 

with 1 < i < m. There is a combinatorial interpretation of the h-vector of 
a shellable simplicial complex due to McMullen and Walkup; see Bruns and 
Herzog [19, Corollary 5.1.14].

Proposition 5.1.4 Let A  be a shellable simplicial complex of dimension d — 
1 > 0 with shelling F i,. . . ,  Fm . Then hg = 1 and hj =  |{i : |c(Fj)| =  j} |.

There is also a combinatorial interpretation of the a-invariant of a shellable 
simplicial complex; see Bruns and Herzog [18, Prop. 2.1]. In order to apply 
this to the weighted case we need to broad the setting. A simplicial complex 
A on a set V = {v i,... ,vn } together with a map <p : V — > N is called a 
weighted simplicial complex. The number <p(vi) is said to be the weight of 
Vi. The Stanley-Reisner ring h[A] is a positively graded A-algebra by setting 
degXj = ai where â  = <p(vi). The Hilbert series HR ^ { Z) of K[A] is of the 
form

)̂Cz)=n u i ^ j
with h(z) G Z[z] and h(l) ^  0. The a-invariant of A can be written a(A) = 
degh -  a i-

Proposition 5.1.5 Let A  be a weighted simplicial complex whose weights are 
<p(vf) = ai, i — 1 ,... ,n. Suppose A is shellable of dimension d — 1 > 0 with 
shelling F i , . . . ,  Fm . Set bi = Ș2UJ 6 F .\C(F .) aj- Then a(A) =  —min {&!,..., bm }.

Note that in the homogeneous case, that is a, = 1 for all i, by Proposition 
5.1.5 we get a(A) = —min {d — |c(F!)|,. . . , d — |c(Fm )|}.
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68 5. Simplicial complexes associated to determinantal ideals

5.2 Cohen-Macaulayness and the multiplicity 
of determinantal rings

(G) Let r  be a diagonal term order on K[X], 6 = [« ! ,. . . ,a t | b i ,. . . ,b t] € 
△(X) and set af+1 =  m+1 and bt+ i = n+1. We know that the inițial term of 6 
with respect to r  is in T (i) = X ^  • • • X a tb t. As we already noticed, the Hilbert 
series of R(X, 6) coincides with the Hilbert series of R /m T (J(X, 6)). The inițial 
ideal in T(/(X ,J)) is a monomial ideal generated by square-free monomials of 
the form Xo» y • • • X a'sb'a with a* > a,, b* > bi for all i = 1 , . . . ,  s — 1 and a' < as 
or b's < bs , s = 1 , . . . ,  t + 1. In order to describe the corresponding simplicial 
complex, let us consider the following subset of the plane

V  - { ( i j )  : 1 < i < m, 1 < j  < n}.

It is a finite poset with the parțial order

(’j )  < ( / , / )  if and only d i > i '  and j  < j'.

One observes that two pairs (i,j)  and (i',j') are incomparable if i < i', j  < j ' 
or z > i', j  > j ' . A subset of V is said to be a chain if any two of its 
elements are comparable, and it is an antichain whether it does not contain 
a pair of comparable elements. Therefore an antichain of V of length s (for 
short s-antichain) is a family of elements (u;, ux) , . . . ,  (us , us ) with the property 
Ui < • • • < us , Ui < •• • < us . Observe that each generator of the inițial ideal 
in T(/(X , 6)) of the form X ^ ^  • • • X ^  has a corresponding family of elements 
in Ds = {(i,j) ■ i < as or j  < bs }, namely (a^, b^),. . . ,  (a's , b's ) with a' > a^ 
b'i > bi t therefore an s-antichain. The corresponding simplicial complex of the 
inițial ideal in T(7(X, 6)) is

X b = {Z Q V : Z  does not contain s-antichains of the set D s for any s =

and therefore R/in T(7(X, 6)) is the Stanley-Reisner ring of Aj. Set d — 1 = 
dim Ai and let fi be the number of i-dimensional faces of Aj, i = 0 , . . . ,  d — 1. 
In particular, the multiplicity of the determinantal ring R(X,6) is fd-i- We 
shall see that the number fd-i of the faces of maximal dimension of A  ̂can be 
interpreted as the number of certain families of non-intersecting paths of V.

By a path in V  starting from a point P  and ending to a point Q, P > Q, 
we mean a maximal chain between P  and Q. It can be written as a sequence 
of points

P  = (ui,vi), • • •, («s,^) = Q
with

(ui — Ui-i, ^  — u ^ )  equals either (1,0) or (0, —1) for alH = 2 , . . . ,  s.
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A point (ui,Vi) of a given path is called a right-turn of the path if 1 < z < s 
and

(ui + i -  Ui, vi+1 -  Vi) = (0, -1 )  and ( ^  -  u ^ ,  Vi -  v ^ )  = (1,0).

If P  = Pu . , . ,P S and Q = Qi, . ■ ,Q S are two sets of s points in V, then a 
family of non-intersecting paths from P  to Q is a union of paths C = U-= 1G 
from Pi to Qi, i = 1 ,. . . ,  s, such that CiQCj =  0 for all i ^  j .  A point C E C is 
said to be a right-turn of C if it is a right-turn of the path to which it belongs. 
It is an interesting fact (and easy to see) that the number of points of any 
path from two points P = (u,v) and Q = (u',v') depends only on P  and Q. 
It is equal to u' — u + v — v' + 1 and is called the length oî the path.

Set Pi = (ai, n), and Qi = (m, bi) with i = ! , . . . , / .  Our goal is to prove 
that the faces of maximal dimension of △{ can be described as being families 
of non-intersecting paths from P  = P ^ ,.. . ,P t to Q = Q i , . . - ,Qt- We first 
introduce some notation. For each element x = (a, b) fE V  we set

Lx = {(M ) E V : i < a , j <  b}, Lx = {(i,j)  € V  :i < a ,j < b},

Rx = {(M ) E V  : i>  a ,j > b}, Rx  = {(i,j)  E V : i > a ,j  > b},

while for any subset Z C V we set

Lz = UX&ZLX, Lz =  UXEZL X, R Z =  UX EZ R X , respectively R z  = Ux e Z R x .

Further, for a subset Z of V we define

b(Z) = {x <E Z : Lx m  = $}.

Note that b(Z) is, in some sense, the left border of Z. It is easily seen that 
b(Z) is always a chain of V. Now set

i —1
Zi = b(Z) and Zi = 6 ^ Z \ | J  Z ^  for z > 1.

J=I

This is called the light and shadow decomposition of Z, where the light comes 
from the point (1,1). It is obvious that the family of the Zi is uniquely 
determined by the following conditions:

(a) Zi is a chain,

(b) z  =  u > ,  Zi,

(c) Zi C Rzt-i, i e. Zi lies strictly on the upper-right side of Z ^  for all 
i > 1.
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Set Vs = V  \  DS. We can give another description of the faces of Aj in terms 
of the light and shadow decomposition:

Lemma 5.2.1 We have ^  = {Z C V : Zs C Vs "for all s = 1 ,... ,t  + 1}.

Proof. Suppose that Z s g  Vs for some s E { l , . . . , t  + l}. Then there exists 
an element x s = (us ,v s ) E Z s such that x s Vs . In particular, we have 
x s ^  Z S- L, hence there exists an ij_ i = (us_i,v s _i) E Z  \  Ui< s-iZ i such that 
u s- i  < us , vs - i < vs . Actually one can take i s- i  € Z s-i. Similarly we get a 
sequence of elements Xi =  (u>, v j  € Zi, i = t — 2 ,. . .  ,1, with the property that 
u s - \  > ••■ > « ! , vs_i > • • • > « ] .  In this way we have found an s-antichain in 
Z D D s , a contradiction.

Conversely, since Z s C Vs we have Zi C Vs for all i > s. It follows that 
Zi n  Ds = Q for all i > s. On the other side, Z C\ Ds = Uj< t(Zj n  D s ) is a 
decomposition of Z O Ds into less than s disjoint chains. Since the elements of 
an antichain of Z  C\ Ds must belong to different chains, it follow that Z O D s 
cannot contain any s-antichain, and we are done. □

Now we are ready to prove that the faces of maximal dimension of Aa 
can be described as families of non-intersecting paths from P = P i,. . . ,  Pt to 
Q = Qi> ■ ■ ■, Qt-
Theorem 5.2.2 A subset Z  of V is a face of kg of maximal dimension, i.e. 
dim Z  =  dim Aa if and only if Z is a family of non-intersecting paths from P 
to Q .

Proof. Let Z E Ag. By Lemma 5.2.1 we know that Z s C Vs for all s = 
1 , . . . ,  t +  1. In particular Z t+1 = 0, hence Z = U‘= 1 ZS. As Z s is a subset of 
Vs , we get that the length Z s is bounded above by the length of a path from 
Ps to Qs , which is equal to m + n — as — bs + 1. Summing up we get

t t

\Z\ = ^ \ Z i \  < t(m + n + 1) -  ^ { a i  + bi). 
i=l i=l

Let W s be the (unique) path from Ps to Qs passing through the point (as , bs), 
s = l , . . . , t ,  and consider W  = U*= 1 WS. Obviously W  E Ag and |W| = 
t(m  + n +  1) -  ^ L j ^  + bi)- In particular, we get that

t

dim Aa = t(m + n + 1) — ^ ^ (a i + bi) — 1.
i=l

Since dim Z  =  dim Aa we must have \ZS \ = m + n — as — bs -I- 1 for all s, and 
it happens only when Z s is a path from Ps to Qs .

Conversely, if Z is a family of non-intersecting paths from P to Q , then 
these paths are the Zi in the light and shadow decomposition of Z. Obviously 
Zi Q Di for all i, hence Z E Ag and dim Z  = dim Aa- □
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Remark 5.2.3 (a) From the preceding results it follows that any face of Aj 
can be describe as a disjoint union of chains Z s contained in Vs with s = 
l , . . . , t .

(b) Note that Vs is a distributive lattice with minimal element Qs and 
maximal element Ps . We further get that Z  G Aj is a facet if and only if Z s is 
a maximal chain of Vs for all s = 1 ,. . . ,  t. It is clear that a maximal chain in 
Vs is a path from Ps to Qs . Conversely, if Z is a facet of Aj whose light and 
shadow decomposition is Z = U*= 1 Zi, let us suppose that Zi is not a maximal 
chain in Vi. Since Zi is not a maximal chain in Vi, it can be extended to a 
maximal one, let us say Z{. Replacing Zi by Z{ we get another face Z' of Aj 
such that Z  is strictly contained in Z', a contradiction. (The argument can 
conținues similarly for Z2 , . . . ,  Zt .) From this we thus get that the complex Aj 
is pure.

(c) As a by-product of the proof of Theorem 5.2.2 and Proposition 5.1.1 
we can regain the dimension formula of Proposition 1.0.9.

By Theorem 5.2.2 and purity of A{ it follows that the multiplicity of AfA^], 
and, of course, that of R(X, 5) is given by the number of families of non- 
intersecting paths from P  to Q . To compute this number we use the Gessel- 
Viennot [39] determinantal formula: for any two sequences of points P = 
P i, . . .,P t and Q = Qi, ■ ■ ■ ,Qt, the number Paths ( P , Q ) of families of non- 
intersecting paths from P  to Q is given by the formula

P aths(P ,Q ) = det (Paths(p, Qj))ij=it...tt

where Paths(Pi,Q J denotes the number of paths from Pi to Qj. In our 
case, Pi = (ai,n) and Qj = (m,bj'). It is easy to see that Paths(p, Qj) = 
,m + n-Oi-M  a n d  t h u s

Theorem 5.2.4 We have

e(R(X, 6)) = det ((  J

For the classical determinantal rings Rt(X) it yields the formula

e(Rt{X)) = det ( ( . ] )
\ \  m — i y / ij=\,...,t-\

which can be simplified by using Vandermonde’s determinant to the following:

Corollary 5.2.5 We have
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Next we prove that Aj is shellable. This is a special case of a theorem of 
Bjdrner [12] on the higher order complexes of finite planar distributive lattices.

Theorem 5.2.6 The simplicial complex Aj is shellable.

Proof. By Remark 5.2.3(b) we have that all facets of Aj have the same di- 
mension.

It remains to prove that there exists a shelling on the facets of Aj. We 
start by giving a parțial order on the set of paths connecting two fixed points 
P,Q E V  with P < Q. Let Zi and Z[ be two paths from P  to Q. We 
say that Z[ < Zi if Zi is on the upper-right side of Z[, i.e. Zi C R z ^  and 
this is a parțial order. For any two sequences of points P  = P i,. . . ,  Pt and 
Q = Q i,-- ■ ,Qt, and two families of non-intersecting paths Z  = Uf= 1 ^  and 
Z' = U[= 1 Zt- from P  t o Q ,  we set Z' < Z  if and only if Z' < Zi for all i. 
Then extend this parțial order arbitrarily to a total order. To prove that the 
resulting total order is a shelling on the the facets of Aj, we take Z  and Z' 
facets and suppose that Z' < Z. Then Z's ^  Rz, for some s = 1 ,. . . ,  t, and we 
choose s as being the largest index with this property. In particular, we must 
have Z's^  C R Za+1, . . . ,  Z't C R Z t . Since Z's g  R Z s , there exists an element 
y G Z's \R Z s . From all elements x E Z s such that y E Lx we choose a n i  = (a ,6) 
with the property that R X QZS = {x}. Note that such an element always exists 
and it should be a right-turn of Z s RR y . Let i j  =  (a — 1, b — 1). If iq Zs_i (or 
s = 1), we consider Z" = Zi for i ^  s and Z" = (Zs \  {i}) U {ii}. Otherwise, 
we need to regress more and let us consider the element x 2 = (a — 2,b — 2). If 
x 2 Z s_2 (or s — 2), we set Z-' = Z, for i ^  s — 1, s, Z" = (Zs \  {i}) U { i j , 
and Z"_i = (Zs_ i\{ ii])U { i2 } - The general case follows in the same manner. 
Finally we get a facet Z" of A  ̂such that Z" < Z, Z \Z "  = {x}, and obviously 
x e z \ Z " .  □

Remark 5.2.7 The proof of Theorem 5.2.6 shows that the facets of A; can 
be given a shelling such that c(F) is the set of right-turns of F  for each facet 
F e ă s .

One of the main consequences of Theorem 5.2.6 is the following:

Theorem 5.2.8 The rings K[Aj] and R(X,6) are Cohen-Macaulay.

Proof. By Theorem 5.2.6 it follows that Aj is shellable, hence K[Aj] is Cohen- 
Macaulay by Theorem 5.1.3. Thus we get that the ring K [X ]/inT(J(X ,5)) 
is Cohen-Macaulay, and this is enough to see that R(X,6) itself is Cohen- 
Macaulay; see Eisenbud [35]. □

(S) Let r  be a diagonal term order on /([X], a  = { « i,. . .  ,a t } € H  and set 
a (+ i =  n +  1. The inițial ideal inT(/(X ,a)) is a monomial ideal generated
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by square-free monomials of the form X a ibi • •’ X a3b, with ai > ai for all i = 
1 , . . . ,  s — 1 and ds < Qj, s = 1 ,. . . ,  t +1. In order to describe the corresponding 
simplicial complex, let us consider V = {(i,j)  '■ 1 < i, j  < n} and its subset 
V  = {{i,j) E V  '. i < j} . Observe that these are finite posets with the parțial 
order

(i,f)  < (iz, / )  if and only i f i > i '  and j  < j 1.
Set D s = {(M ) : i < a s or j  < a s } and note that each generator of 
the inițial ideal inT(/(X ,a)) of the form X aibl • • ■ X a3b3 has a corresponding 
family of elements in D's = DS R V ,  namely (01,61),..., (as , bs ) with ai > ai, 
therefore an s-antichain in D's . We define

A a = {Z G V : Z  does not contain s-antichains of the set Ds for any s = 
l , - , t + l } ,

and let A^ be the restriction of AQ to V . The corresponding simplicial com­
plex of the inițial ideal inT(/(X ,a)) is A„, and therefore R /in T (J(X ,a)) is 
the Stanley-Reisner ring of A^. Using the results of part (G) which describe 
the facets of AQ we will be able to describe the facets of A'o . The first ob- 
servation is that AQ is the simplicial complex Aj defined in part (G) with 
8 =  [c*!,. . . ,  a t |a i , . . . ,  a t]. Recall that a facet Z  of Aj is the disjoint union of 
Z i , . . . ,  Z t where Z s is a maximal chain of the distributive lattice V \  Ds . A 
maximal chain of V \ / ) s may be interpreted as a path from (n, a s ) to (a s , n).

Lemma 5.2.9 Let Z be a facet of A a . Then \Z D V'| — (n + l)t — ^ . =1 ai.

Proof. The rank of the poset V \ P S is clearly 2(n — a s ) -I- 1. The elements 
of V  \  Ds’ are exactly the elements of V \  Ds of rank greater or equal than 
n+ 1 — a s . Thus any maximal chain of V \D S must contain exactly n + 1 — a s 
elements of V  \D \ .  Now the result follows from the characterization of the 
facets of A Q ; see Theorem 5.2.2. □

As an immediate consequence we get:

Proposition 5.2.10 Let Z' be a face of A'a . Then Z' is a facet of A'a if and 
only if there exists a facet Z  of AQ such that Z' = Z  R V '.

Proof. Let first Z' be be a facet of A^. Since A^ is the restriction of Ao to V' 
there exists a facet Z  of AQ such that Z' G Z. On the other side, Z R V ' is a 
face of A^ which contains Z 1, and so Z' = Z  O V'. Conversely, first note that 
Z 1 is contained in a facet IV' of A'Q. As we already know W  = W R V  with 
W  a facet of AQ. By virtue of Lemma 5.2.9 the facets Z  and W  of AQ must 
have the same cardinality, and hence Z = W. □

Lemma 5.2.9 and Proposition 5.2.10 provide an immediate proof for Propo­
sition 1.0.13(a). Let us recall it:
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Corollary 5.2.11 We have dimH(X, a) = (n + l)t — £ - =1 a,.

Now we describe the facets of △„ in terms of disjoint union of paths. Let 
P, = (as ,n) and Qs = {(a s ,a s ), (as + 1 ,0 , + 1 ) , . . . ,  (n,n)}, s = l , . . . , t .

Proposition 5.2.12 The set Z' is afacet of X'a  if and only if Z ' is the disjoint 
union of Z { ,. . . ,  Z't , where Z's is a path from Ps to one of the points of Qs , 
s = 1 , . . . ,  L

Proof. By Proposition 5.2.10 we know that Z' is a facet of A^ if and only 
if there exists a facet Z  of AQ such that Z' = Z n V f . But Z  is the union 
of disjoint paths Z ^ ,... ,Z t , where Z s is a path from Ps to (n, a s ). If we set 
Z's = Z s r\ V  then Z's is a maximal chain in V  \D 'S . Now take into account 
that the set of minimal elements of V  \  D's is exactly Qs . □

The above description of the facets of △„ and the purity of the simplicial 
complex AQ show that the simplicial complex A'Q itself is pure. It follows that 
the multiplicity of /CfA^], and, of course, that of R (X ,a )  is also a matter of 
paths-counting, the only difference being that the ending points are not fixed 
now.

Theorem 5.2.13 We have

e(R(X ,a)) = ^  det
l<ki < - <kt<n, a<<ki

n — Oii 
n — kj i,j=l,...,t.

Proof The multiplicity e(R (X ,a)) of R (X ,a )  is given by the number of 
disjoint union of paths from Ps to a point of Qs , s =  1 , . . . ,L  Let Us = 
(ks ,k s ), k s > a s be a fixed point of Qs , s = 1 ,... ,t. In the following we 
consider ^  < • ■ ■ < kt , since otherwise there are no disjoint paths. Thus 
we get Paths(P,W ) = det (Paths(Pi, t/j))^ !,...^  where P = P^,. . .  ,Pt and 
U = U i,...,U t . But we know that Paths(P„ Uj) = ("““^  and the proof is 
done. □

For the classical rings of symmetric minors S t (X} it yields the formula

e (« X ) )  =
l<fci < • <fc£_i <n

, t - l .

Example 5.2.14 In the particular cases t =  2,3, n — 2, n — 1 we have

n — 2 J

(c) e(Sn _2 (X)) = + , (d) e(Sn _ j(X ))=  ).
\ b / \ b / \ 3 /
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5.2. Cohen-Macaulayness and the multiplicity of determinantal rings 75

By Theorem 5.2.6 the simplicial complex Aa  is shellable. Next we show 
how the shellability passes from a simplicial complex to a subcomplex that 
fulfill a condition as 5.2.9.

Lemma 5.2.15 Let A  be a shellable simplicial complex on a set of vertices V, 
and V  a subset o fV . Suppose that the number \Z n  V'| does not depend on Z 
for each facet Z  of A. The the restriction of A to V  is a shellable simplicial 
complex.

Proof. Denote by A' the restriction of A to V ,  and by d the number |Z A V'| 
where Z  is any of A. As in Proposition 5.2.10 we get that A' is a pure simplicial 
complex of dimension d — 1 and that a subset Z' oi V' is a facet of A' if and 
only if there exists a facet Z of A such that Z' = Z  H V'.

For a facet Z' of A' we define

Z' = min {Z : Z is a facet of A with Z A V' = Z'}

where the minimum is taken with respect to the total order on the facets of 
A. Now it is natural to consider a total order on the facets of A' by setting

Z{ < Z2 if and only if Z[ < Z2

and show that this order gives the desired shelling. Let Z{, Z2 be facets of A' 
with Z{ < Z2 . Then Z{ < Z2 , and since the total order on the facets of A is a 
shelling there exists a facet IV of A, W  < Z2 and an element x E Z2 \Z {  such 
that Z2 \W  — {x}. Let IV' = IV A V'; W  is a facet of A' since IV is a facet of 
A, and IV' < Z 2 by definition. Note that x € Z2 since otherwise W  DV' = Z2 
and IV < Z2 , a contradiction. Therefore x € Z2 \  Z{ and Z2 \  IV' = {r}. □

Theorem 5.2.16 The simplicial complex A$ is shellable.

Proof. Straightforward by Propositon 5.2.10 and Lemma 5.2.15. □

Theorem 5.2.16 gives an alternative proof of the Cohen-Macaulayness of 
the ring R (X ,a )  stated earlier in Proposition 1.0.13(b).

Theorem 5.2.17 The ring R (X ,a ) is Cohen-Macaulay.

Proof. By Theorem 5.2.16 it follows that the complex A^ is shellable, hence 
K[A^] is Cohen-Macaulay by Theorem 5.1.3. Thus we get that the ring 
Â’[X]/inT(/(X ,tt)) is Cohen-Macaulay, and this is sufficient to show that 
R (X ,a )  itself is Cohen-Macaulay; see Eisenbud [35]. □

(A) Recall that we have defined a term order T  on the polynomial ring K[X] 
by setting

^ l n  >  ^ l n - !  >  • • • >  X 1 2  >  X 2 n  >  X 2 n - 1  >  • • • >  A 2 3 >  • • • >  X n - l n '
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76 5. Simplicial complexes associated to determinantal ideals

W ith respect to r  the inițial monomial of a pfaffian zr =  [a j , . . . ,  a 2 t] is inT (7r) = 
[]*_! X a ja 2 t_<+1. Since we have determined Grobner bases only for the ideals 
I t fX ) ,  we restrict ourselves to the classical case. The inițial ideal in T ( / t (X ))  is 
the monomial ideal generated by the square-free monomials X O1O21 • • • X O|(11+1 
with 1 <  ai <  • • • < a2t <  n. In order to describe its corresponding simplicial 
complex, let us consider the following subset of the plane

V =  { (b j)  : 1 <  Î  < j  < n}.

On the finite set V  we introduce the parțial order

( i , j )  < ( i ' , f )  if and only i f î  < i '  and j  < j '.

Two pairs ( i , j )  and (i1,? )  are incomparable if z < z', j  > j 1 or i > i', j  < j '. 
Note th a t an s-antichain of V is a family of elements (u i,V !) ,. . . ,  (us ,v s ) with 
the property uj < ••• < u s , v  ̂ > ••• > vs , and th a t it corresponds to the 
leading term of the 2s-pfaffian [u i,. . . ,  u „  vs . . . ,  v j .

It is now clear th a t the corresponding simplicial complex of the inițial ideal 
in T (It(X )) is

&t = {Z  Q V  '• Z  does not contain t-antichains},

and therefore R / in T (I t (X )) is the Stanley-Reisner ring of A t . As in part (G), 
we shall see th a t the number of the faces of maximal dimension of A t can be 
interpreted as the number of certain families of non-intersecting paths of V . 
One observes th a t a path in V is a sequence of points

P  =  (u i ,v i ) , . . . ,  (us ,v s ) = Q

with P  > Q and

(ui — « i - i , ^  — Vi_i) equals either (1,0) or (0,1) for all i =  2, . . . , s .

Set Pi — (n — 2i +  1, n) and Qi =  (1, 2z), i =  1 , . . . ,  t — 1. We shall prove 
again th a t the faces of maximal dimension of A ( can be described as families 
of non-intersecting paths from P  = Px , , P t^  to Q = Q i , . . . ,  Q t-\. In order 
to do this we introduce some notation. For a subset Z  of V  we define

b(Z) =  {(i, j )  € Z  : there is no element fi' ,j '}  € Z  with i > i' and j  < j '} .

Note th a t bfZ) is, in some sense, the right border of Z. It is obvious th a t bfZ) 
is always a chain of V. Now set

i-l
Zi =  bfZ) and Zi = b^Z  \  J J  Z ^  for z > 1.

7=1

(This is also a light and shadow decomposition of Z , where the light comes 
from the point fn — 1, n)). It follows th a t Z  =  (J Z;, and Zi are disjoint chains. 
We now give another description of the faces of A f in terms of the light and 
shadow decomposition:
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Lemma 5.2.18 We have &t = {Z  C. V : Z t = 0}.

Proof. This follows readily from the fact that the elements of any antichain of 
a subset Z  of V  must belong to different Zi. □

Theorem 5.2.19 A subset Z  of V  is a face of A t of maximal dimension, i.e. 
dim Z = dim A t if and only if Z  is a family of non-intersecting paths from P 
to Q.

Proof. Let Z be a face of A ( of maximal dimension. By Lemma 5.2.18 we have 
Z t = 0, hence Z = U ^ Z i .  Then Zi must be a path from a point (ui,n) to a 
point (1,^). We claim that v̂  > 2i and Ui < n — 2i + 1. If v, < 2i, then the 
paths Z i , . .. ,Zi must pass through the antichain (1, 2i — 1), (2, 2i —2 ),. . . ,  (i - 
1,2 + 1). But this antichain has only z — l elements which have to lie on different 
paths, a contradiction. Thus we obtain that \Zi\ = Ui + (n — bi) < 2n — 4i + 1. 
Summing up we get

t-i
|Z| = £  |ZJ < ( t -  l)(2n - 2 t  + 1).

Let Wi be the (unique) path from Pi to Qi passing through the points (2, 2s+i), 
(2, 2s + i — 1) for i = n — 2s,. . . , 2, s = 1 ,. . . ,  t — 1, and consider W  = u 'z } ^ . 
Obviously IV 6 A t and |1V| = (t — l)(2n — 2t + 1). In particular, we get that

dim A f = (t — l)(2n — 2t + 1) — 1.

Since dim Z  = dim Af we must have \Zi\ = 2n — 42+ 1 for all 2, and it happens 
only when Zi is a path from Pi to Qi.

Conversely, if Z is a family of non-intersecting paths from P  to Q, then 
these paths are the Zi in the light and shadow decomposition of Z. Thus 
Z t = 0, hence Z e A ( and obviously dim Z  = dim A ( . □

Remark 5.2.20 (a) From the preceding results it follows that any face of A ( 
can be describe as a disjoint union of chains Zi, i = l , . . . , i - l .  Furthermore, 
we also get that the complex A( is pure.

(b) As a by-product of the proof of Theorem 5.2.19 and Proposition 5.1.1 
we can regain the dimension formula of Proposition 1.0.18.

By Theorem 5.2.19 and purity of A( it follows that the multiplicity of 
K[A(], and, of course, that of Pt(X) is given by the number of families of 
non-intersecting paths from P  to Q.

Theorem 5.2.21 We have

e(Pt (X)) =  det
/ /  2n -  4t + 2
\ \ n  — 2t — 2 + J + 1

2n — 4t + 2
n — 2t — i — j  + 1 >J=I ,t.

(5-2)
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Proof. Set P- = ( n - t —i+ l ,n - t + i + l )  and Q  ̂ = ( t - i , t+ i ) ,  i = 1 , . . . ,  t —1. 
We have that Pi < P' < Q'i < Qi, and note that any path Zi from Pi to Qi 
must pass through P- and Q .̂ By using the determinantal formula of Gessel- 
Viennot [39] we get

Paths(P, Q) =  det(P aths(^ ',Q ')) i j = 1 ... (_b

Taking into account that the paths from P- to Q'} are bounded by the line 
x = y of the plane, we deduce

P a th s(^ , Q') =
/ /  2n -  4t + 2
\ \ n  — 2t — i +  j  +  1

/  2n -  4t + 2
\n  — 2t — i — j  + 1

□
Ghorpade and Krattenthaler [40, Theorem 2] proved that formula (2.5) can 

be simplified to the following:

Corollary 5.2.22 We have

< U W 0) = n  2 t ~ ^ ’ +  3 - <5 '3 )

Ki^^n-îi+l J

In particular, for n = 2t + 1 we get e(Pt (X)) = S ± ® ± 1 ) ; see Herzog and 
Trung [45, pg. 29].

A similar argument to the one of Theorem 5.2.6 shows that the complex 
△t is shellable. Thus one obtains another proof for the Cohen-Macaulayness 
of the ring Pt(X).

5.3 Hilbert series of determinantal rings
In order to describe the Hilbert series of determinantal rings we use the com- 
binatorial interpretation of the A-vector of their associated simplicial complex.

(G) By virtue of Proposition 5.1.4, Theorem 5.2.6, and Remark 5.2.7 we can 
interpret the h-vector h(^ș) = (ho, h j , ...)  of the complex △{ in terms of 
families of non-intersecting paths with a given number of right-turns.

If P  = P i,.. . ,P S and Q = Q i,. . .  ,Q S are two sets of s points in V, let 
P a th s(P ,Q )t denote the number of families of non-intersecting paths from 
P  to Q with exactly k right-turns. With this notation, we can write h^ = 
Paths(P , Q)k where Pi = (ai, n), and Qi = (m, bi), i = 1 ,... ,t. In particular 
we have:
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5.3. Hilbert series of determinantal rings 79

Theorem 5.3.1 The Hilbert series Hg(z) of K[Ag,\ and R(X,6) is given by 

H M  & P a t h s ( P ,e ) t 2 ‘

where d = (m + n + l)t — ^■ = 1 (di +  ii) is the Krull dimension, P  — P i,. . . ,  Ps , 
Q = Qi, ■ ■ >Qs, and Pi = (fii, n), Qi = (m, b j, i = l , . . . , t .

Krattenthaler [52] has found, by purely combinatorial methods, a determi­
nanta! formula for the enumeration of families of non-intersecting paths with 
a given number of right-turns that holds no matter how the starting and end 
points are located. In fact, he showed that

Paths(P , Q)k — 5 ?  det
fci + ''4 kt=k

m — aj — i + j 
. k i

n — bj + i — j \ '
. k i + i - j  /-lij=i ,t.

If the starting and end points are P  =  (1, n), (2, n ) ,. . . ,  (t — l,n ) and 
Q = (m, 1), (m, 2 ) ,. . . ,  (m, t — 1) one can show that

^  Paths(P , Q )kZk = z 2 ^det 
k

see Conca and Herzog [26].

(S) Since the facets of the complex A^ are restrictions of the facets of AQ to 
V', it is natural to aim for similar results to the ones of part (G).

In the hypotheses of Lemma 5.2.15 and with the notation introduced in its 
proof we have:

Lemma 5.3.2 Let Z 1 be a facet of A'. Then c(Z') = c(Z').

Proof. Let x G c(Z') and Z{ a facet of A' such that Z[ < Z' and Z '\Z [  = {r}. 
Then Z{ < Z', and by shellability of A there exists a facet IV of A and an 
element y E Z' such that W  < Z' and Z' \  W  = {y}. By definition of Z', the 
restriction of IV to V' is not Z '. Thus we get y = x and x G c^Z'}. For the 
converse we argue in a similar way. □

Let Ps = (as ,n) and Qs = {(as , a s), (a s + 1, a s + 1 ) ,.. . ,  (n, n)}, s = 
1 ,. . . ,  t. Recall that the set Z' is a facet of A'a  if and only if Z' is the disjoint 
union of Z { ,. . . ,  Z't , where Z's is a path from Ps to one of the points of Qs , s = 
1 , . . . ,  t. Suppose that Z's is a path from (a s , n) to (ks , ks ) with a s < ks . Define 
IVS as being the path from (a s ,n) to (n ,a s) obtained from Z's by adding the 
set of points {(n, a s ), (n -  1, a s ) , . . . ,  (ks , a ^ , (ks , a s + 1 ) ,.. . ,  (ks , ks )}. From

https://biblioteca-digitala.ro / https://unibuc.ro



80 5. Simplicial complexes associated to determinanta! ideals

the definition of shelling on the facets of AQ , it is clear that Z' is the union of 
Wi, . . . ,  W t . Then by Lemma 5.3.2 we have c(Z') = c(Z').

Proposition 5.1.4, Theorem 5.2.16, and Lemma 5.3.2 will give an interpre- 
tation of the h-vector h(A'Q) = (h0 , h i , ...)  of the complex A'Q in terms of 
families of non-intersecting paths in V  with a given number of right-turns. 
But first we have to modify the definition of right-turns accordingly. Given a 
path in V  from a point (a,n) to a point (b,b), and a point (i,j)  of the path, 
then (i,j)  is called a right-turn of the path if z < j  and (i — 1, j), ( i,j  — 1) 
belong to the path, or i = j  (in this case i =  6) and (i — 1, j)  belong to the 
path. (Note that the first case correspond to the definition of right-turns in 
part (G).) It is obvious that the right-turns of Z' are exactly the right-turns 
of Z'. Set again V = P ^ ,.. . ,P t and Q = Qi, ■ ■ ■ ,Qt where Pi =  (a^n), 
Qi = { (a ^ a j ,  (a, + l ,a i  + 1 ) ,..., (n,n)}, i =  l , . . . , t .  By Paths ( P , Q )k we 
denote the number of families of non-intersecting paths from P  to Q with 
exactly k right-turns. Thus we have that hk = Paths(P, Q)k-

Theorem 5.3.3 The Hilbert series Ho (z) of K[A'Q] and R (X ,a ) is given by

^ P a t h s ^ Q ) ^ * 
(1 -  ^)d

where d = (n + l)t — ^ - =1 a  ̂ is the Krull dimension.

(A) The /i-vector of the complex A( can also be interpreted in terms of families 
of non-intersecting paths. However, the interpretation is not straightforward 
and we refer the interested reader to Ghorpade and Krattenthaler [40]. Actu- 
ally they use a determinantal formula of Krattenthaler [52] for the enumeration 
of families of non-intersecting paths which do not cross the line x = y and with 
a given number of right-turns in order to prove that

P a M P .C ) *  = S *  det ( ( T “ ) m  -  (“H 'X-W ’) )^ ,..

where V  = { ( t -  1, t — 1), (t, t — 2 ) ,. . . ,  (2t — 3,1)} and Q = {(n — t + l ,n  — 
t + \} ,(n  — t + 2,n — t ) , . . .  ,(n  — \ ,n  — 2t + 3)}. On the other side, they show 
that hk must coincide with Paths(? , Q )k . Thus we get:

H M  =

Theorem 5.3.4 The Hilbert series H t (z) of K[A t \ and Pt(X) is given by

H M  =

( (n~2t+2\ (n-2t+2\ _  Zn-2t+l\Zn-2t+3\ \
k l 1 k+i-j )\ k ) \ k-j )\ k+i ) I . , , ,

(1 -  Z )(2n-2t+l)(t-l)
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5.4 The a-invariant of determinantal rings
For the computation of the a-invariant we restrict our attention to the classical 
case. Further, we also consider the weighted case.

(G) Suppose that m < n and let e i , . . . ,  em  and f i , .  ■ ■, f n  be two sequences of 
integers such that ei + / ;  > 0 for all i , j .  If we give to indeterminate Xij the 
degree et + fj, then all minors of X  are homogeneous. Since the ring Rt(X) is 
invariant under rows and columns permutations we may always assume that 
£ ] < • • • <  e m- Moreover, we order the columns such that f i < - - < f n - In 
this frame we get the following formula for the a-invariant a(Rt(X)) of R t (X).

Theorem 5.4.1 We have

m  n t— 1

a(Jh(Xf) = - ( t -  1 ) ( £ e ;  +  £  fj) -  ( n -  m j ^ e i  < - ( t  -  l)n.
i=l j=l i=l

Proof. Denote by A t the complex Aj with 5 = [ l , . . . , t -  l | l , . . . , t — 1]. 
By Proposition 5.1.5 we have that a(A t ) =  —min {p(Z) : Z is a facet of A( } 
where

P(Z) = E  degXj.
( i . j ) e z \c ( z )

Recall that any facet Z of At is a disjoint union of paths Zi from Pi =  (i, n) 
to Qi = (m,i), z = 1 ,. . . ,  t -  1. For Zi we consider p(Zi) defined identically 
as above, with the mention that c(Zi) represent the set of right-turns which 
belong to Zi. Consequently p(Z) = E ÎZ Îp(^)- Note that Zi necessarily 
passes through Q\ = {m — t + i + l ,i)  and let Z' the part of Zi from Pi to 
Qi. Set Z' = U ^ Z - .  Then p(Z) and p(Z') differs by a constant OJ which is 
independent of Z  since none of the elements in Zi \  Z- is a right-turn of Zi. 
Therefore

min {p(Z) : Z is a facet of A (} = min {p{Z')} + VJ

where Z' is the part of Z  defined as above.
It is obvious that any path from Pi to Q[ has at most m — £ + 1 right-turns. 

Let Wi be the path from Pi to Q* with exactly m — t + 1 right-turns, namely 
(m — t + i — j  + l , i  + j  + l), j  = 0 , . . . ,  m — t. We claim that p(Wi) > p{W i) for 
any path Wi from Pi to Q*. In order to prove the claim we distinguish three 
cases.

Case 1. Assume Wi C R ^ -  Then for all j ,  i < j  < n, there exists a 
unique k such that (k ,j) € Wi \  c(Wi), and a unique k' with (k^ j)  G Wi but
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(k",j) ^  Wi for all k" < k'. Obviously the point (k ',j)  is not a right-turn of 
Wi, and thus the map

^ : W i \  c(Wi) — ^ W, \  c(Wi) defined by ^ ((k ,j) )  = (k ',j)

is a monomorphism. Since ek + fj  < ek> + f j  for all j  and k as before we get 
PW ) > pfWi).

Case 2. Assume Wi C L ^ .  Then for all j ,  m — t +  i +  1 < j  < n, the 
paths Wi and Wi have the point ( ^ j )  in common. Therefore it is enough to 
compare the parts of the paths Wi and Wi starting from P[ = ( i ,m - t  + i+ l) 
and ending to Q' = (m — t + i + l,i) . These two points can be considered 
as the upper left corner, respectively the lower right corner of a square whose 
edges have length m — t + 1. In order to simplify notation we may suppose 
that PI = ( l,s)  and Q' =  (s, 1). We have p(Wi) = Y f^ U k e k  + Y ^ V j f j 
where Uk and Vj are positive integers. On the other side, we have p(Wi) = 
E L i ( e * +  A-k+1) = E L i  e * + EJ=i fj- Obviously p(W{) > p (W if

Case 3. This is the general case when Wl might intersect Wi in more points 
than their starting and ending points. Let W* be a part of Wi in between two 
successive intersection points, and W i the corresponding part of IV,. Then 
either W* C R^* or Wi C L^" ■ According to the first two cases we must have 
pfW*) > pfWi \  and summing up we get the desired inequality.

Now the theorem follows easily. Let Zi = W iU{(m — t + i + 2 ,i ) , . . . ,  (m, i)} 
and Z = U ^ Z i .  It is clear that Z is a facet of A t . Then p(Z) > p(Z) for 
any facet Z  of A t , and thus a(R t (X)) = —p(Z). Now we can easily derive the 
desired formula. □

(S) If we give to indeterminates Xij the degrees Uij, then all minors of X  are 
homogeneous if and only if 2uij = Un + Ujj. Therefore we essentially encounter 
the following two situations:

(a) There exists e j , . . .  ,en positive integers such that degA^ = ei + ej for 
all i ,j .

(b) There exists e i , . . . , e n non-negative integers such that degĂ^ = ei + 
ej + 1 for all i , j .

Since the ring Rt(X) is invariant under rows and columns permutations we 
may always assume that ei < ••• < en . Under these hypotheses we get the 
following formula for the a-invariant a(S t (X)) of S t (X).
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T heorem  5.4 .2  We have

( - ( * - i ) ( £ L O 
a(S f(X)) =

in the case of degree type (a), respectively

if n = t mod(2)

if n ^  t mod(2)

a(S t (X)) =
- ( < - i ) E L ^  + f )

if n = t mod(2)

if n ^ t  mod(2)

in the case of degree type (b).

Proof. The argument is similar to the one of part (G). Denote by At the 
complex AQ with a  =  [1 , . . . ,£  — 1]. By Proposition 5.1.5 we have that a(A t ) = 
—min {p^Z) : Z is a facet of Af } where

P W  = E  degX0 .
( i ,j}£ Z \c (Z )

Recall that Z is a disjoint union of paths Zi from Pi = (i, n) to a point of 
Qi = {(2, i ) , .. .,(n ,n )} , i = 1 ,... ,t  -  1.

The key of the proof is to define a facet IV of A t with the property that 
p(W} < p(Z) for any facet Z  of A t . As in part (G), IV should be a facet with 
maximal number of right-turns. Set Fi be the set {(2,72), (2, TI — 1 ) ,.. . ,  (2,72 — 
t + i + 2)} for 2 = 1 ,. . . ,  i — 2, and set Ft_i =  0.

For n = t mod(2), we define IV, as being the path from {i,n} to ( ^  + 
z + l, ^  + 2 + 1) obtained from Fi by adding the points (i,n — t + 2 + 1), 
(2 + 1, zi -  £ + 2 +  1), . . . ,  (2 + j, n — t + i — j  +  1), (2 + j  + 1, n -  t + i -  j  +  1), 
. . . ,  (2 + ^ ,  ^  + i + 1), (2 + ^  + 1, ^  + i +  1).

If n ^  t mod(2), we define IV, to be the path from (2,72) to ț5 ^  + 
j, 1 7 ^  + ’) obtained from Fi by adding the points (2,72 —t + i + l), (i,n  — t + i), 
(2 + 1,72 -  t + i), . . . ,  (i + j ,n  -  t + i -  j) , (i + j  + l ,n  -  t + i -  j), . . . , 
(i + ^ ,  ^  + i), (2 + ^ ,  ^  + i).

Finally we set IV = U-Z}lVt .
In order to prove that p(IV) < p{Z) for any facet Z  of A t , we start by 

considering the case t = 2 and n even. It is not hard to see that c(IV) = 
{(2,72), (3, 72 - l ) , . . , |  + l , p  1)}, and so IV \  c(W) = {(1,72), (2,72 - 
1 ) , . . . , ( ^  + 1)}. We have either p(IV) = ^ " =1 ei if the degree is of type (a) 
or p(lV) = £ " =1 e, +  Ș if the degree is of type (b). Now let Z be a path from 
(1,72) to (k, k). We observe that if 2 < A: (resp. i > k )  then there exists j  such 
that (i,j)  G Z  (resp. (j,i) G Z), and if (i,j) G c(Z) then (i,j  — 1) G Z \c (Z ) 
(resp. if (j,i) G c(Z) then (j -  1,2) G Z \  c(Z)). Thus we get readily that 
p(W} < p(Z).
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84 5. Simplicial complexes associated to determinantal ideals

If t =  2 and n odd, we have either p{W) = £ " =1 ei +  ei if the degree is of 
type (a) or p(W) =  ^ " =1 Cj +  ei + ^  if the degree is of type (b). Let Z be a 
path from (l,n ) to (k,k). By the same argument as above one deduces that 
|Z \c(Z )| > 2y-, and that there exists an i which appears twice as a coordinate 
of some elements in Z \  c(Z). Taking into account that ei < ••■ < en  we get 
p(W) < p(Z).

In the general case, let us consider Z  = U ^^Z t be a facet of Af . Since 
the paths Zk are non-intersecting, we must have Fk C Zk for all k. We may 
consider Zk and Wk as paths starting from (i, n —t + i + 1), and argue as before 
to show that p(Wjt) < p(Zk ) for all k. Thus we get

t-i t-i

PW  = ^ «  < J 2 P(Z*) = P(Z )
k=l k=l

and the proof is done. □

(A) Let eb , . . ,  en be a sequence of non-negative integers such that e, = 
ej mod(2) for all i , j .  Set degA^ = |(ei + ej). Thus all pfaffians of X 
are homogeneous. We get the following formula for the a-invariant a(R t (X)) 
of R t ( X \

Theorem 5.4.3 We have

( - ( ' - 1 X E L O  *f 2 t - 2 < n , 
a(P<W ) =

l  - ( t - D E L ^ i )  ■/ 2 ! - 2  = n.

Proof. The case 2t — 2 = n is trivial. Assume that 2t — 2 < n and consider 
the facet Z  of A t with

Zi = {(j, 2Î + j  -  1) : j  = 1 , . . . ,  n -  2i + 1} U {(j, 2i + j)  : j  = 1 , . . . ,  n -  2i}

where i = l , . . . , t  — 1. One observes that Z  is maximal in the shelling order. 
For this facet we have c(Z) = {(l — k ,l + k + 1) : k = 0 ,. . .  ,t  — 2 and l = 
t , . . . , n - t } .  We get that b = X(ij)ez\c(z) 2 ^  +  e i) = (* ~ 1 ) E"=i e i- O n  t h e 
other side, one checks easily that the corresponding number b for any facet of 
A t is greater or equal than (t — 1) E L I e i- The desired formula follows readily 
by using Proposition 5.1.5. □
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Chapter 6

Algebras of minors

Let I  be an ideal of a Noetherian ring R. The Rees algebra of I  is the 
graded 7î-algebra R(I}  = ® ”= 0 ^ -  When 7 is a prime ideal there is an- 
other graded 7?-algebra associated to I, namely the symbolic Rees algebra 
IV  (I) = ® ”= o 1 ^ -  1° this chapter we treat a special and interesting case: the 
Rees algebras of determinantal (pfaffian) ideals and their special fibers. To 
enter the details, we are going to investigate three types of graded algebras 
associated to determinantal (pfaffian) ideals: the Rees algebra R (I)  of a prod­
uct 7 = 7t l (X) • • • I t u (X) of determinantal (pfaffian) ideals (with emphasis on 
the case u = 1), the symbolic Rees algebra TV(It) of It(X ), and the algebra 
of t-minors (2t-pfaffians) A t , that is the subalgebra of 7f[X] generated by the 
t-minors (2/-pfaffians) of X. First we are going to do a detour by studying 
their inițial algebras. In all three cases the inițial algebra is a normal affine 
semigroup ring and its description is simply a translation of the results of 
Chapter 4 into the algebra setting.

6.1 Cohen-M acaulayness and normality of al­
gebras IHIt) and At

(G) Let X  = (Xij) be a generic matrix of size m x n over a field K, and 
assume for simplicity that m < n. In the following we consider A t and TVJt) as 
subalgebras of a common polynomial ring S  = K[X, T] = K[X]{T] obtained by 
adjoining a new indeterminate T  to K[X], A t being generated by the elements 
of M tT, where M t is the set of t-minors, and R(Jt) being generated by M tT 
and the entries of X .

For / =  1, the Rees algebra of the polynomial ring 7C[X] with respect to 
the ideal I\(X )  can be represented as a determinantal ring, which is known as 
being a normal Cohen-Macaulay domain. For A t the case i =  1 is quite trivial, 
since /li = K[X], In the opposite extreme case of maximal minors, i.e. t = m,

https://biblioteca-digitala.ro / https://unibuc.ro



86 6. Algebras of minors

Eisenbud and Huneke [36] proved that m it )  is normal and Cohen-Macaulay. 
Their approach is based on the notion of algebra with straightening law. On 
the other side, the algebra A m  is nothing but the homogeneous coordinate 
ring of the Grassmann variety which is known to be a Gorenstein factorial 
domain; for instance, see Bruns and Vetter [21]. For A t we get another simple 
case, revealed by its dimension: if t < m, then dimA t =  dimK[X] =  mn 
(see Bruns and Vetter [21, Prop. (10.16)]) and so, for t = m  — 1 = n — 1 the 
algebra A t is generated by mn  = dim A t elements, therefore it is isomorphic 
to a polynomial ring over K. In the general case Bruns proved that m it) 
and A t are Cohen-Macaulay and normal for any t provided charK = 0, by 
using invariant theory methods; see Bruns [15]. In this part we extend Bruns’ 
results to the positive characteristic case; see Bruns and Conca [16].

We say that K  has non-excepțional characteristic if either char K  = 0 or 
charA” > m in(/,m  — t,n  — t). For excepțional characteristic, m it )  and A t 
can be (and perhaps are always) very far from being Cohen-Macaulay.

Example 6.1.1 Let K be a field of characteristic 2 and suppose that m ,n > 
4. Set I  = h țX )  and note that dimTÎ(I) = mn + 1. Now we can use the 
computer program MACAULAY [9] to show that [1|1][234|234] £ I 2 . On the 
other hand, it is not difficult to see that [34|34]([1|1][234|234]) € I 3 . Starting 
with these observations Bruns [15, Prop. (4.1)] proved that depth li(I) = 1. 
In particular, Rees algebra 11(1) is not a Cohen-Macaulay ring. Moreover, 
in this case A2 is not normal. The product [1|1][234|234] is integral over I 2 , 
hence over 4 2 and belongs to the field of fractions of S2 .

The best result we can hope for is that m it )  and A t are Cohen-Macaulay 
in non-exceptional characteristic. As we have seen, the extreme cases £ = 1 
and t = m  have nothing to do with the characteristic of K. Therefore we 
will concentrate our attention to the remaining cases, that is, we make the 
following
Assumptions. (a) When studying the Rees algebra m it) ,  we will assume 
that t < min (m, n),
(b) when studying A t , we will assume that 1 < t < min (m, n) and that m ^  n 
if t =  min (m, n) — 1.

Let us recall that powers and products of determinantal ideals are inter- 
sections of symbolic powers; see Theorem 4.1.3 and Corollary 4.1.4. It follows 
that the Rees algebra of a product I  = I tl (X) • • • I tA X ) is the intersection of 
symbolic Rees algebras of the various It(X ) and their Veronese subalgebras. 
Then Lemma 4.3.5 implies that the description as an intersection passes on 
to the inițial algebras. AII these observations show that we have to focus our 
attention on the description of the inițial algebra of the symbolic Rees algebra 
m i t ) -
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6.1. Cohen-Macaulayness and normality 87

First note that the description of the symbolic powers of determinantal 
ideals in Theorem 4.1.1 yields a description of the symbolic Rees algebra given 
by

R ^ I t)  = K[X][It {X )T ,Iw (X }T 2 , .. . , I m (X )T m - t+ 1].

Let r  be a diagonal term order on K[X] and extend it arbitrarily to a term 
order on S. Then the inițial algebra inT ( ^ s (A)) of ^ ( I t )  is given by

oo

® i n T( / ( (X )« )T \ 
t=o

Application of Theorem 4.3.4 provides the following

Proposition 6.1.2 One has

in T (1¥(It »  = K[X][inT (It ( X ) ) T ^ ^ ^

In particular, a monomial M T k is in in T( ^ s (I()) if and only if yt{M} > k.
In order to prove that the symbolic Rees algebra is Cohen-Macaulay and 

normal we need to show that KRS commutes with taking the powers of 
(bi)tableaux.

Lemma 6.1.3 Let H be a standard (bi)tableau. Then

KRS(E‘) = KRS(E)fc,

for all positive integers k. In particular, for any monomial M  of K[X] and 
any positive integer k we have y^M *) = ky^M ).

Proof. First observe that a power of a standard (bi)tableau is again standard. 
Then note that k successive applications of DELETE algorithm on Ek act like 
a single application on k copies of E. For the second part, we just recall that 
we can write M  = KRS (E) with E a standard bitableau, and by Theorem 
4.3.2 î t (M) = 7(E). □

As we already mentioned at the beginning of this chapter, we prove that 
the inițial algebra inT ( ^ s (A)) is a normal affine semigroup ring.

Theorem 6.1.4 The inițial algebra in T (7Zs (It )) of the symbolic Rees algebra 
^ ( I t )  is finitely generated and normal. In particular, in r (R.s (I t )) a n d R ^If) 
are Cohen-Macaulay.
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88 6. Algebras of minors

Proof. By Theorem 4.3.4 it follows that the monomial algebra inT(7£s (Zt )) is 
finitely generated. For normality it suffices to show that M T l G in T(7£s (Zt )) 
whenever a power of M T l belongs to in T {R.s {It))', see Bruns and Herzog [19, 
Theorem 6.1.4]. Assume that {MT l )k G in r {fJV {It )). By virtue of Theorem 
6.1.2 we have y t {Mk ) > kl. On the other side, from Lemma 6.1.3 we have 
î t(M k ) = ky t {M), and therefore yt{M) > l. Using again Theorem 6.1.2 we 
get M T l e in T {n s {It )).

From Hochster’s theorem, the fact that inT(7îs (Z()) is Cohen-Macaulay 
follows from its normality; see Bruns and Herzog [19, Theorem 6.3.5]. For the 
Cohen-Macaulay-ness of the symbolic Rees algebra we use a result of Conca, 
Herzog, and Valla [27, Theorem 2.3]. □

More general, for products of determinantal ideals we get:

Theorem 6.1.5 Let a = (ti, . . . , t u ) be a non-increasing sequence of integers. 
Set gi = 7i(a), I  = I t l {X) • ■ ■ I tu (X) and suppose that char K  = 0 or char K  > 
min {ti, m — ti,n  — ti) for all i = 1 ,... ,u. Then
(a) in T (^(Z)) is finitely generated and normal, 
(b) H{I) is Cohen-Macaulay and normal.

Proof As already mentioned in r (77(Z)) = ® ^ .o in T(Zl )T t , and by Theorem 
4.3.6 in T(Z) = Q*^ in ^ Z ^ A )^ ) . Therefore we have

t i  oo

inr (R(/)) = p  GB “*-(APO'^’rr*.
1=1 k = 0

Observe that for gi > 0 the monomial algebra 0 ^ . o 'n T ^ '(^ )* l s '’) ^ t  is 's o - 
morphic to the ^ th  Veronese subalgebra of the monomial algebra inT( ^ ’(Zj), 
while for & = 0 it equals the polynomial ring 5. By Theorem 6.1.4 we 
know that the algebra in T(77.s (Z,)) is finitely generated and normal, hence 
® ” 0 in T ( I i ( X ) ^ ) T k is finitely generated and normal. Since the intersection 
of a finite number of finitely generated normal monomial algebras is finitely 
generated and normal (see Bruns and Herzog [19, Prop. 6.1.2 and Theorem 
6.1.4]), we thus get that in T(77(Z)) is a normal finitely generated monomial 
algebra.

For (b) we use the same argument as in the proof of Theorem 6.1.4. □

In particular, we obtain the following:

Corollary 6.1.6 Suppose that char ZC = 0 or char A > min {t,m  — t). Then 
the Rees algebra ^{ It)  is Cohen-Macaulay and normal.

For the algebra of minors A t we have:
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Theorem 6.1.7 Suppose that char X = 0 or char K  > m in(t,m  — t). Then 
the inițial algebra in T(At ) is finitely generated and normal. In particular, A t 
is Cohen-Macaulay and normal.

Proof. In Section 6.2 we shall denote by Vt the K-subalgebra of S  gener­
ated by the monomials M T  with degM = t. Note that A t C Vt and that 
Vt is a normal semigroup ring isomorphic to the t-Veronese subalgebra of 
the polynomial ring S. Furthermore, A t = m i t )  A Vt and this implies that 
in T(Af) =  in T(^ (4 )) A Vt . By Theorem 6.1.5 the inițial algebra i n ^ ^ I J )  is 
normal, and Vt is obviously normal, so we get that in T(ylt ) is normal. □

(A) Let X  = (Xij) be a generic alternating matrix of size n over a field K. As 
in part (G), we can consider A t and m i t )  as subalgebras of the same polyno­
mial ring S  = K[X,T] = K[X][T] obtained by adjoining a new indeterminate 
T  to K[X], A t being generated by the elements of M t T, where M t is the set 
of 2t-pfaffians, and m it )  being generated by M tT  and the entries of X .

For t =  1, Rees algebra can be again represented as a determinantal ring, 
and thus it is a normal Cohen-Macaulay domain, while Ai = K[X], In the 
case of maximal pfaffians we can have: (1) n even and 2t = n; in this case 
everything is trivial, or (2) n odd and 2t = n — 1; in this case Eisenbud 
and Huneke [36, Prop. 2.8] proved that m it)  is normal and Cohen-Macaulay, 
while A t is isomorphic to a polynomial ring over K  in n indeterminates. Once 
more, for A t we get another simple case, revealed again by its dimension: if 
2t < n — 1, then dim At = dimA^X] = (") (see De Negri [32, Prop. 1.1]) and 
so, for n even and 2t = n — 2 the algebra A t is generated by (2) = dim A t 
elements, therefore it is isomorphic to a polynomial ring over K. In general, 
Bruns [15] hinted that m it)  and A t are Cohen-Macaulay and normal for any 
t as long as char X = 0, by employing invariant theory methods. In this part 
we extend Bruns’ results to the positive characteristic case; see Baetica [5].

We say that K  has non-excepțional characteristic if either char A" = 0 or 
char A' > min (2t,n — 2t). For excepțional characteristic, m it)  and A t can be 
(and perhaps are always) very far from being Cohen-Macaulay.

Example 6.1.8 Let us consider n = 8 and char AT = 3. Set I  = h ^X )  and 
note that dim ??.(/) = 29. A run of the computer program MACAULAY [9] 
reveals that [12][345678] does not belong to I 2 . On the other side, it is easy 
to show that [5678]([12][345678]) € I 3 . Similarly to Bruns [15, Prop. (4.1)] we 
can show that depthK(I) = 1, hence 71(1) is not Cohen-Macaulay. Moreover, 
in this case A2 is not normal. The product [12] [345678] is integral over I 2 , 
hence over 4 2 and belongs to the field of fractions of S2 .

Therefore we have to restrict our attention to the non-exceptional char­
acteristic case. As we have seen before, the extreme cases are rather easy.
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Therefore we will concentrate our attention to the remaining cases, that is, 
when studying the Rees algebra TVjt) we assume that 2t < n, and when 
studying A t we assume that 2 < 2t < n — 2.

In Chapter 4 we have proved that the powers and products of pfaffian ideals 
are intersections of symbolic powers; see Theorem 4.1.15 and Corollary 4.1.16. 
As in part (G) we will start with the description of the inițial algebra of the 
symbolic Rees algebra IV  (It ).

In this case Theorem 4.1.1 yields a description of the symbolic Rees algebra 
given by

IV(J t ) = K[X][It (X)T, I t+ l { X )T \  . . . ,  Im (X )T m - t+ 1], 

where m = [n/2], Let r  be the diagonal term order on K[X] defined in 
Chapter 3 and extend it arbitrarily to a term order on S. A direct application 
of Theorem 4.3.11 provides the following

Proposition 6.1.9 One has

in T (1V(It )) = K [X ][inA ltW )T A ^^^

with m  = [n/2].

In particular, a monomial M T k is in in T(U s (I()) if and only if y^M ) > k. 
Since KRS commutes with taking the powers of tableaux we get:

Lemma 6.1.10 For any monomial M  of K[X] and any positive integer k we 
have y t (M k ) = ky t (AI).

Proof. Recall that we can write M  = KRS (P) with P  a standard tableau, 
and by Theorem 4.3.9 we get ît(M } = 7(P). O

Similarly to Theorem 6.1.4 we can establish the following:

Theorem 6.1.11 The inițial algebra in T(P S(Z<)) of the symbolic Rees algebra 
1V(It) is finitely generated and normal. In particular, in T (TV(It)) andlV ilf) 
are Cohen-Macaulay.

More general, for products of pfaffian ideals we get:

Theorem 6.1.12 Let a = (< i ,.. . ,tu ) be a non-increasing sequence of inte- 
gers. Set g, =  ^(cr), I  = I t l (X) ■ ■ ■ I t u (X) and suppose that charK = 0 or 
char K  > min (2/,, n — 2tf) for all i = 1 ,... ,u. Then 
(a) in T(P(Z)) is finitely generated and normal, 
(b) P(J) is Cohen-Macaulay and normal.
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In particular, we obtain the following:

Corollary 6.1.13 Suppose that charA' — 0 or charA' > m in(2t,n — 2t). 
Then the Rees algebra m i t )  îs Cohen-Macaulay and normal.

For the algebra of pfaffians A t we have

Theorem 6.1.14 Suppose that charK = 0 or charA" > m in(2 t,n -2 t). Then 
the inițial algebra in T (A t ) is finitely generated and normal. In particular, A t 
is Cohen-Macaulay and normal.

Proof. Similar to 6.1.7.

6.2 Divisor class group of m it)  and At

(G) For maximal minors the divisor class group and the canonical class of 
m it)  have been determined. They are the “expected” ones, that is, those of 
the Rees algebra of a prime ideal with primary powers in a regular local ring: 
C l(^ (/ f)) is free of rank 1 with generator c\(It'R.(It)) and the canonical class 
is (2 -  height/Jcl^TT/Zt)); see Herzog and Vasconcelos [44], or Bruns, Simis 
and Trung [20]. On the other hand, for non-maximal minors, Cl(7^(7t )) is free 
of rank i; see Bruns [15].

Our goal is to describe the divisor class group of m it)  and A t for t < 
min (m,n). The main tools are the 7-functions that allow us to describe all 
relevant ideals in m it)  and A t and the Sagbi deformation by which we will lift 
the canonical module from the inițial algebras of m i t )  and At to the algebras 
m i t )  and A t themselves.

From now on we will always assume that the characteristic of the field 
K  is non-exceptional. Clearly, A t C m it )  and both algebras are N-graded 
in a natural way. Moreover m i )  /  (X ym jt) — A t , where (X )m h )  *s  the 
ideal of m it)  generated by the Xij. Denote by Vt the A'-subalgebra of S 
generated by monomials that have degree t in the variables X ^  and degree 1 
in T. Note that A t C Vt and that Vt is a normal semigroup ring isomorphic 
to the t-Veronese subalgebra of the polynomial ring S. The rings "mit) and 
A t are already known to be normal Cohen-Macaulay domains. The aim of 
this part is to determine their divisor class group and canonical class and to 
discuss the Gorenstein property of these rings. As we have mentioned before 
these invariants are already known is some special cases. Therefore we will 
concentrate our attention to the remaining cases.

Our approach to the study of the algebras under investigation makes use 
of Sagbi bases deformations and of the straightening law for generic minors. 
For generalities on the former we refer the reader to Conca, Herzog and Valla 
P 4
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We may define the value of function 7t for any polynomial f  of K[X] 
as follows. Let f  =  £ i =1 fi IA the unique representation of /  as a linear 
combination of standard monomials IA with coefficients A, 0. Then we set

Tt(f) =  inf{7t(M.) : « = 1, - - ,p}

and 7t(0) =  +oo. This definition is consistent with the one above in the 
sense that if p is a product of minors of shape s which is non-standard, then 
7t(M) = 7 t (4

The function 7* is indeed a discrete valuation on K[X] (with values in N), 
that is, the following conditions are satisfied for every f  and g in K[X]:

(a) 7 t(/ + j)  > min (7t(/),7t(</))> and equality holds if ^ f )  ^  7t(^),

(b) ^ ( fg )  =  7t(/) + 7t(s)-

Note that (a) follows immediately from the definition, and (b) from the fact 
that the associated graded ring of a symbolic filtration is a domain if the base 
ring is regular. We may further extend 7( to the field of fractions QțA'fX]) of 
K[X] by setting

Tt(f/g) =  7t(/) -  7t(^)

so that S is a subring of the valuation ring associated with each 7( .
The next step is to extend the valuation 7t to the polynomial ring S  and 

to its field of fractions. We want to do this in a way such that the subalgebras 
H(It) and A t of S  will then be described in terms of these functions. So, from 
now on, let us fix a number t with 1 < t < min (m,n). For every polynomial 
F = ^ =0 fiT^ /  0 of S we set

7i(F) = in f^C f,) -  j( t  +  1 -  i) : j  = 0 ,. . .  ,p};

in particular
7i(^) = - ( t  + 1 -  i).

Then we have:

Proposition 6.2.1 The function 7̂  defines a discrete valuation on the field 
of fractions Q(S) of S.

Proof This is a general fact, see Bourbaki [10, Ch. VI, §10, no. 1, lemme 1]. 
□

Note that F  = ^  fiT* G S has ^ F )  > 0 if and only if fi G /i(X)W f+ 1- ’» 
for every j . It follows from Corollary 4.1.4 that the Rees algebra 11(11) of 
It(X ) has the following description:
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Lemma 6.2.2 One has

R (I t ) = { F e S - .  ^ F )  > O for i = 1 , . . . ,  t}.

Similarly A t = {F e Vt : 7i(F) > 0 for i = 2 , . . . ,  t}. But this description 
is redundant:

Lemma 6.2.3 One has

A t = { F e V t : ^ (F }  > 0}.

Proof. We have to show that if /x is a standard monomial with deg p, = kt and 
72M  > k(t — 1), then 7,(^) > k(t + l — i) for all j  = 3 , . . . ,  t. For i = 1 ,. . . ,  m 
let ai denote the number of the factors of p which are minors of size i. By 
assumption we have that

m  m

(a) ^ ^ ia i  = kt and (b) J ^ ( i  — l)a, > k{t — 1). 
i= l  i= 2

In view of (a), condition (b) can be rewritten as
m

(c) ^ a i < k . 
i= l

We have to show that

(d) £ “i(l + 1 -  J) > k (t + 1 -» ■ 
i=j

Note that

E " j  + 1  -  »  = E™ 1 a ^  + 1  -  »  -  E ^ i 1 °.(«+ 1  -  »  = 
k t +  E™ 1 ^ U  -  »  + E ^ J  a iU -  i - 1).

Therefore (d) is equivalent to

m  J —1
( ^ _  E ° » ) o  - ! ) + E a i ( j  _  _  - 0 

i= l  t= l

which is true since the left hand side is the sum of non-negative terms. □

Similarly the inițial algebras of Tl(It) and A t have a description in terms 
of the functions jj. To this end we extend the definition of the function 7, to 
monomials of S  by setting

7i(M T k ) = ^ (M )  - k ( t  + l - i )
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where M  is a monomial of S. Furthermore, for a polynomial F  =  ^ J =1 XjNj 
of S  where the Ni are monomials and the Xj are non-zero elements of K, we 
set

7i(F) = inf^A T j) : j  = 1 ,... ,p}.
Now Theorem 4.1.4 implies:

Lemma 6.2.4 (a) The inițial algebra in T (m it))  of m i t )  is given by

in T(7£(7f)) = {F G S : ^ (F )  > 0 for i = 1 ,... ,t) .

The set of the monomials N  of S  such that ^ (N )  > 0 for i — 1 , . . . ,t  form a 
K-vector space basis of in T (m it))-
(b) The inițial algebra in T (A t ) of A t is given by

in TM t ) =  {FG  Vt :7 2 (F )> 0 } .

The set of the monomials N  of S  such that ^\[N) =  0 and îz(N ) > 0 form a 
K-vector space basis of in T (A t Y

The major difference between the functions 7, and 7, is that the latter is 
not a valuation. Nevertheless, it will turn out that 7, is an “intersection” of 
valuations; see Section 6.3.

The divisor class group of m it )  can be determined by the primary decom- 
position of the divisorial ideal I t (X )m it)  using a theorem of Simis and Trung 
[59, Theorem 1.1]. We present a (slightly) different approach to it, which will 
also be used to determine the divisor class group of A t .

For i =  1 , . . . ,  t we set Pi = {F  G m it)  : 7,(F) >1}. Since 7̂  is a discrete 
valuation, it follows that Pi is a prime ideal of m it)-  Furthermore:

Lemma 6.2.5 For every i = 1 , . . . ,  t and j  > 0 one has

P^  = { F e n ( i t ) n ( F ) > j } .

Proof Set Pi(j) =  {F G m it )  : 7:(F) > j}- By construction, Pi(j) is Pi~ 
primary and Pi(j) D P?■ So it is enough to show that Pi(j) C P ^ ,  or, in other 
words, that for every F  G Pi(j) there exists G G m it)  such that 7,(G) = 0 and 
GF  G P -. We may assume that F = pT k where p is a. product of minors. Let 
<5 be a minor of size i — 1 (with i  = 1 if i =  1). Evaluating the 7-functions and 
using Theorem 4.1.3, one then concludes b^p  G Ii{X)N t [X)k . This implies 
that t f îp T k G ( li(X )m it)) ''■ As l i(X )m it)  C Pi and 7^(5) = 0, we are done. 
□

The ideal I t (X )m it)  is a height 1 ideal of m it)-  This follows, for instance, 
from the fact that m it )  has dimension mn + 1 and associated graded ring 
m i t ) / I t(X )m it)  has dimension mn. Furthermore I t (X )m it)  is a divisorial 
ideal since it is isomorphic to 0 “=1 I t (X )k T k , which is a height 1 prime ideal.

As a consequence of Lemma 6.2.5 and Corollary 4.1.4 we obtain
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Proposition 6.2.6 One has

it(x)n(it) =
and this is an irredundant primary decomposition of I t (X)'R.(It ). In particular, 
Pi is a height 1 prime ideal o fH (I t ) for i = 1 ,... ,t.

Proof. By virtueofLemma6.2.5theequality I ( (X )^(I() = n ‘= 1 ^ t - , + ^ issim- 
ply a re-interpretation of Corollary 4.1.4. Since we assume that t < min (m, n), 
the primary decomposition of It(X )k  given in Corollary 4.1.4 is irredundant 
for k ^> Q. It follows that the primary decomposition of I t (XyR(It) is also 
irredundant. □

Remark 6.2.7 Since one can prove directly that Pi is a height 1 prime ideal 
with primary powers, one can also use the standard localization argument in 
order to show Lemma 6.2.5 and Proposition 6.2.6 (see Bruns [15]).

Proposition 6.2.8 One has

s = ryn(it)Q
where the intersection is extended over all the height 1 prime ideals Q o fP (I t ) 
different from Pi, . . . , Pt .

Proof. We have to show that for every height 1 prime ideal P of S  the intersec­
tion PO'lZ(It) is a height 1 prime ideal of P(It). Let 6 be a t-minor. Then it is 
easy to see that R (/t)[i- 1 ] = S[6- 1 ]. Since taking intersections commutes with 
localizations, it is enough to deal with the height 1 prime ideals of S  which 
contain 5. But 5 is a prime element in S, so that we may assume P = (6). Set 
Q = P(It) A (5), that is, Q = {a6 G H(It) ■ a E S}. We claim

(6)7i(70 = Q n P 1
(% P 2

(f- 1 ) n - - - n P t . (1)

The inclusion C is trivial. For the other inclusion, let 6a be an element of Q, 
with a € S. If for i = 1 ,.. . ,  t the element 6a is in P-t+ l~*\ then ^i(a) > 0, and 
hence a G H(It)- Now observe that, for obvious reasons, Q does not contain Pi 
for i = 1 ,. . . ,  t -  1. Also, Q contains Pt exactly if 6 is the only t-minor of the 
matrix. But this is excluded by assumption. Therefore we may conclude that 
Q is a minimal prime of (6)P(Jt) and hence it is a height 1 prime of H(It). □

Theorem 6.2.9 The divisor class group Cl(K(/()) of1Z(It ) is free of rank t, 

c \( n ( i t y) z ‘

with basis cl(P i),. . .  ,cl(P t ).
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Proof. The conclusion follows from Proposition 6.2.6 and from a general result 
of Simis and Trung [59, Theorem 1.1]. Let us mention that one can derive the 
result also directly from Fossum [37, Theorem 7.1] and Proposition 6.2.8; to 
prove that cl(P i),. . . ,  cl(Pt ) are linear independent one may use equation (1). 
□

We have similar constructions and results for A t . First define

P =  {F  E A t : 72 (F) > 1}.

It is clear that p is a prime ideal of A t .

Lemma 6.2.10 The ideal p is prime of heiqht 1. Moreover, one has p '̂ = 
{F £ A  : ^ ( F )  > j} .

Proof. Let f  be a t + l-minor of X . Set g = f lT t+ 1 . By construction, g E Vt 
and 72 (^) =  1 so that g E A t . Set

q = ( / ) S n 4

In other words, q =  ( / a  € A( : a E S). Since /  is a prime element in S, the 
ideal q is prime. Furthermore we have pqf C ( s ) c p n q .  The second inclusion 
is trivial. As for the first, note that any generator of pq‘ can be written in the 
from gb, and then just evaluate 72 to show that b is in A t . It follows that p is 
a minimal prime of (g) (and hence a height 1 prime) unless it contains q. So 
we have to show that q ^  p- To this end let h be a minor of size t — 1, then 
h fT 2 E q and ^ ( h f T 2) =  0.

The second statement is proved as in Lemma 6.2.5. □

As a corollary of the proof we get:

Corollary 6.2.11 The ideal q is a height 1 prime ideal of A t . Furthermore 
q b) = ( P ) S n A .

Proof. It suffices to check that q does not contain p. Let /1 be a t + l-minor 
of X different from f  (it exists by our assumptions). Then f[T M  is in p, but 
not in q. The second statement is easy. □

Proposition 6.2.12 Set A = A t . Then one has

Vt =  nAp

where the intersection is extended over all the height 1 prime ideals P of A t 
with P ^  p.
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Proof. We have to show that for every height 1 prime ideal P  of Vt the 
intersection P  A A is a height 1 prime ideal of A. Let g = pT**1 be the 
element described in Lemma 6.2.10. By evaluating 72 one shows that g ^ p T 
is in A for every monomial ți of degree t in S. It follows that A[j- 1 ] = Vj^- 1 ]. 
Hence it is enough to deal with the height 1 prime ideals of Vt containing g. 
Let P = ( f )S  D Vt . It is easy to check that P l C (g)Vt so that P  is the only 
minimal prime of g in Vt . But P Q A = ( f)S  A A = q, which has height 1 by 
Corollary 6.2.11. □

Theorem 6.2.13 The divisor class group of A t is frec of rank 1,

Cl(Af) ^  Z

with basis cl(q). Furthermore we have cl(p) = —tcl(q).

Proof. By Fossum [37, Theorem 7.1] and Proposition 6.2.12 we have an exact 
sequence:

0 Zcl(p) -> Cl(At ) -> Cl(Vt ) -> 0.

It is well-known that C1(V() is isomorphic to Z /tZ  and that it is spanned by 
the class of the prime ideal P  generated by the elements of the form X ^ p T 
where ^ i s a  monomial in the Xij of degree t -  1. Note that cl(p) is a torsion 
free element in Cl(Af). This is because p(J ' = {F £ A t : ^ (F )  > j}  cannot be 
principal; in fact, it contains all the elements of the form gi where g = f lT t+ l 
and /  is a t +  l-minor. Now fix a t + l-minor f  and set P\ = ( f )S  A Vt , 
that is Pi is the ideal generated by all the elements of the form fp T 2 where 
^ is a monomial of degree t — 1. Evidently Pi is isomorphic to P  and hence 
cl(Pi) generates Cl(Vf). But q is Pi A Af and hence cl(q) is the preimage of 
cl(Pi) with respect to the map Cl(At) —> Cl(Vt ). It follows that cl(p) and cl(q) 
generate Cl(Af). By evaluating the function 72 one shows that q̂  ̂Ap = (g)A t . 
Hence cl(p) = —tcl(q). Consequently Cl(Af) is generated by cl(q), and C1(A() 
is torsion free. □

6.3 Canonical modules of inr (7£(4)) and inT(4J
(G) The crucial step in determining the canonical modules of the rings P(A) 
and A( is the description of the canonical modules of the semigroup rings 
in T(7J(Zt )) and in T(Af). We know that in T(P ( / t )) and in T(Af) are normal 
(see Theorem 6.1.5 and Theorem 6.1.7) and hence their canonical modules are 
the vector spaces spanned by all monomials represented by integral points in 
the relative interiors of the corresponding cones.

To simplify notation we identify monomials of S  with integral points of 
jțmn+i Ț0 a  sufcset G of the lattice { 1 ,..., m} x { 1 ,..., n} we associate the
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ideal PG = (Xij : ( i,j)  ^  G) of S  and a linear form IQ on Rm n defined by 
f d ^ i j )  =  1 if ( i,j)  G and fc (^ ij)  =  0 otherwise.

The inițial ideal inT(/ t (X)) of I ^ X )  is the square free monomial ideal 
generated by the inițial terms of the t-minors. Therefore it is the Stanley- 
Reisner ideal of the simplicial complex

△t = M  C { 1 ,..., m} x {1 ,... ,n} : A does not contain t-antichains}.

We know that A t is a shellable simplicial complex; see Chapter 5. Denote by 
F ( the set of the facets of A t . Then

in .(/,(%)) =  f |  PF
FeF t

where PF denotes the ideal generated by the Xij with ( i,j)  F. The elements 
of F t are described in Chapter 5 in terms of families of non-intersecting paths. 
We start by proving:

Proposition 6.3.1 One has

in T( W ‘l ) = P | / * .  (2)
FGFt

By Theorem 4.3.4 we know that the inițial ideal inT( / ( (X )^ )  of I ^ X ) ^ 
is generated by the monomials M  with jt^M ) > ^- Now a monomial M  = 
IIL i ^«i^ *s  *n  PF *f a n <d only if the cardinality of {i : (uj,Vi) ^  F} is > k. 
Equivalently, M  is in Pp if and only if the cardinality of {i : (ui,Vi) G F} is 
< deg(M) — k. If we set

w^M } = max{|4| : 4  C { 1 ,..., s} and {(u,, Uj) : Î € 4} G A f }

then we have that a monomial M  is in A FGF( P F i f  a n d  o n ly if wt (M) < 
deg(M) — k, that is, deg(M) — wt {M) > k. Now Proposition 6.3.1 follows 
from:

Lemma 6.3.2 Let M  be a monomial. Then ^t(M} -I- wt (M) =  deg(M).

We reduce this lemma to a combinatorial statement on sequences of in- 
tegers. Given such a sequence v we define wt (v) to be the cardinality of the 
longest subsequence of v which does not contain an increasing subsequence of 
length t, that is,

wt (v) = max{length (c) : c is a subsequence of v and 77(c) = 0}.

Let M  = [ [ L  X UiVi be a monomial. We may order the indices such that 
Ui < «i+i for every i and ^ + i > Vi whenever û  =  ui + i. (We have already
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considered this rearrangement in Chapter 3.) Then the t-diagonals dividing 
M  correspond to increasing subsequences of length t of the sequence v, and 
wt (M) = wt (v). Since wt (M) depends only on the sequence v, identically as 
in Chapter 3, we may assume that Ui = i for every i. Then, by exchanging the 
role between the u /s and the v/s we may also assume that the v, are distinct 
integers. Summing up, it suffices to show the following:

L em m a 6.3 .3  One has ^t(y} + wt (v) = length (v) for every sequence v of 
distinct integers.

Proof. Let P = INSERT(u) be the tableau obtained from v by the insertion 
algorithm. We have that wt (v) is equal to the maximal length of a subsequence 
of v which can be decomposed into t -  1 decreasing subsequences. Therefore 
wt (v) = dt _i(v); see the notation before Green’s theorem in Chapter 3. On the 
other hand, by Theorem 4.3.3 we know that 7t (v) is equal to 7t(P) which is 
the sum of the length of the columns of P  of index > t. Therefore y t (v) + wt {v) 
is equal to the number of entries of P  which is the length of v. □

We know that in^ l^X )* ) = 0^=1 iR AM ^O^**1 J ^) 0n  non-exceptional 
characteristic) and hence, taking into consideration Proposition 6.3.1, we have:

in Ț(f,(X)‘ ) = A ( ] f ; " + H I  (3)
>=i FeF,

Since the powers of the ideal Pp are Pf-primary we have that (3) is indeed a 
primary decomposition of in T {It {X}k }.

For every F  6 Fj we extend the linear form ^  to the linear form LF on 
Km n+1 by s e t t jn g Lp(T) = —(t +  l — i). Then the equations (2) and (3) imply:

L em m a 6.3 .4  A monomial N  belongs to in r (7Z(It )) if and only if it has non- 
negative eiponents and Lp(N) > 0 for every F € Fi and i = 1 ,... ,t.

Theorem 6.3.4 can be interpreted as a description of the normal semigroup 
of monomials in the inițial algebra of the Rees algebra of It(X ) in terms 
of linear homogeneous inequalities. It follows from the general theory (see 
Bruns and Herzog [19, Chapter 6]) that the canonical module y (inT(^(/t))) 
of in r (7£(7t)) is the semigroup ideal of m it )  generated by the monomials X 
with all exponents > 1 and Lp(N) > 1 for every F  G Fi and i = 1 ,. . . ,  t.

Let X  denote the product of all the indeterminates Xij with (i,j) G 
{ 1 ,..., m} x { 1 ,..., n}. The canonical module w(inT(7i(It))) has a description 
in terms of X  and the functions 7,:
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Lemma 6.3.5 The canonical module w(in T (11(1 t yf) of in T (1Z(It )) is the ideal

{F € S : X T  \ F  in S  and îi(F ) > 1 for every i = 1 , . . . ,  t}

o fin T (n ( I t )).

Proof. Let N  = M T k be a monomial, where M  is a monomial in Xij. Then, 
for a given i, LF (N) > 1 for every F  G F, if and only if ̂ ( M )  > k(t + l — i) + l 
for every F  G F,. By (2) this is equivalent to M G in T( I ^ 1+1~^+ 1’) which in 
turn is equivalent to yi(M) > fc(t +  1 — z) + 1. Summing up, LF (N) > 1 for 
every F  G F, and z =  1 , . . . ,  t if and only if yi(N) > 1 for every z =  1 ,. . . ,  t  □

Similarly the canonical module w(inT(Â( )) has a description in terms of 
the function 72:

Lemma 6.3.6 The canonical module w(in T(At )) of in T (A t ) ^  the ideal

{F (=Vt : X T  \ F in S and 72 (F) > 1}

of in T (At).

(A) We already know that in T(71(/t)) and in T (At) are normal (see Theorem 
6.1.12 and Theorem 6.1.14) and hence its canonical module is the vector space 
spanned by all monomials represented by integral points in the relative interior 
of the corresponding cone; see [19, Ch. 6].

In the following we identify X ^  with the point (i,j)  on the plane. On the 
set X  = {(i,j) : 1 < i < j  < n} we introduce the parțial order (i,j) < (i',j') 
if and only if z < z' and j  < j'. The inițial ideal inT(I( (X)) of It(X) is the 
Stanley-Reisner ideal of the simplicial complex

X t = {A C X  : A does not contain t-antichains};

see Chapter 5. Denote by F ( the set of the facets of A ( . Then

in ,(I ,(X ))=  p |  PF 
FeFt

where PF denotes the ideal generated by the X ^  with (i,j) ^  F.

Proposition 6.3.7 One has

in r (/,“ ’) =  p |  P£. (4)
Fer,
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Proof. As in part (G), the proposition reduces to a combinatorial statement 
on sequences of integers. Given such a sequence b we define wt (b) to be the 
length of the longest subsequence of b which does not contain a decreasing 
subsequence of length t, that is,

wt (b) = max{length (c) : c is a subsequence of b and 7t(c) =  0}.

Actually, we have to show that

7t(&) + wt (b) = length (b)

for every sequence b of distinct integers.
Let P = INSERT(d). By virtue of Greene’s theorem 3.2.2, the sum dk(b} of 

the lengths of the first k rows of P  is the length of the longest subsequence of 
b that can be decomposed into k decreasing subsequences. Therefore wt (b) = 
dt_i(b). On the other hand, by Theorem 4.3.10 we know that y t (b) is equal to 
7t(P) which is the sum of the length of the rows of P  of index > t. Therefore 
7t(b) + wt (b) is equal to the number of entries of P  which is the length of b. □

Proposition 6.3.7 has the following consequence:

Coroilary 6.3.8 One has

i n 4 / , p 7 )  = p ] Q  (5)
j=l FGFJ

Now small changes of the arguments in part (G) yield very similar results 
for pfaffians. First let us identify the monomials of S  with integral points of 
R^n-iJ/z+i Ț 0  a  s u bset G of the lattice X  we associate the ideal PG = (Xij : 
(i,j) G) of S  and a linear form t G on R”^ - 1)/2 defined by t G (Xij) = 1 if 
(i,j) G and f G {Xij) = 0 otherwise.

For every F  € F, we extend the linear form f f  to the linear form LF  on 
^ (n -il /H i by setting L F (T) =  - ( t  + 1 — i). Then the equations (4) and (5) 
imply

Lemma 6.3.9 A monomial N  belongs to in T (7i(It )) if and only if it has non- 
negative exponents and LF (N) > 0 for every F  € Fi and i = 1 ,... ,t.

Lemma 6.3.9 provides the description of the semigroup in terms of linear 
homogeneous inequalities. Let X  denote the product of all the indetermi- 
nates X ^  with ( i,j)  G X . Then the canonical module w(inT(7î(/())) has the 
following description in terms of X  and the functions 7,:
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Lemma 6.3.10 The canonicul module w(in T (1l(fi))) of in (11(11)) is the ideal

{F  G S  : X T  \ F  in S  and ^ (F )  > 1 for every i — 1 ,... ,t}

of in T (R(fi)).

Similarly we get:

Lemma 6.3.11 The canonicul module a>(in T (A t )) o fin T (A t ) is the ideal

{ F ț V t ; X T \ F  in S  and y2 (F) > 1}

of in T (A t ).

6.4 The canonical classes of m it) and At

(G) In this section we will describe the canonical modules of R (fi) and of A t 
and determine the canonical classes. In order to do this we have to proceed 
to a “de-initialization” of the results in Section 6.3. To this end we need the 
deformation lemma of Bruns and Conca [16, Lemma 4.1].

Lemma 6.4.1 Let R  = K [X \,. . . , Xn ] be a polynomial ring equipped with a 
term order and with a grading induced by positive weights deg(X,) = Vi. Let 
B  be a finitely generated K-subalgebra of R generated by homogeneous poly- 
nomials and J  be a homogeneous ideal of B. Denote by in(B) and in(J) the 
inițial algebra and the inițial ideal of B and J  respectively. Then we have: 
(a) I f in (B) is finitely generated and in (B )/in (J ) is Cohen-Macaulay, then 
B /J  is Cohen-Macaulay.
(b) I f in (B) is finitely generated and Cohen-Macaulay and in (J) is the canon­
ical module of in (B) (up to shift) then B is Cohen-Macaulay and J  is the 
canonical module of B  (up to the same shift).

Proof. (a) Let f i, ■ ■ ■, fk be a Sagbi basis of B  and g\, •. ■ ,gh a Grobner basis 
of J. We may assume that these polynomials are monic and homogeneous. 
Consider the presentation K [Y i,. . .  ,Yk]/I = B  oî B  obtained by mapping 
Yi to fi and the presentation K[Yx,.. .  ,Y k ]/fi = in (B) of in(B) obtained 
by mapping Yi to in (fi). Let h i,. .  . ,h p  a system of binomial generators for 
the toric ideal fi, say hi = Y ai — Y b i. Then for each i we have expressions 
f ai _  ^  _  ^X ijfc ij w ith Xij E K \  {0} and in ( f Ci>) < in ( / “*) for every i ,j . 
It is known that the polynomials

Y ai - y b' - ^  W ' 3 (4)
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generate I. For each gi we may take a presentation gi = f di + Y ^ i j f d'i w ’^ 
&ij E K  \  {0} and in ( f di^  < in ( f d i) for all i , j .  Then, by construction, the 
preimage of J  in K [Y]/I is generated by the elements

+ (5)

and the preimage of in (J) in K[Y]/Ii is generated by the Y d i. Hence B /J 
is the quotient of K[Y] defined by the ideal H  that is generated by the poly- 
nomials (4) and (5), and in (B )/in (J) is the quotient of K[Y] defined by the 
ideal Hi that is generated by the polynomials hi and Y d i.

If we can find a positive weight w on X[Y] such that in w (B) = Hi, then 
there is 1-parameter flat family with special fiber in (B )/in (J) and general 
fiber B /J . This implies that B /J  is Cohen-Macaulay, provided in (B )/in (J) 
is. Let us define w. First consider a positive weight a on K{X] such that 
•n a (/c°) < in Q( / Oi) for every i , j  and in Q( / d ,J) < in Q( / d’) for every i and 
j. That such an OL exists is a well-known property of monomial orders; for 
instance, see Sturmfels [61, Proof of Cor. 1.11], Then we define w as the 
“preimage” of a  in the sense that we put w(Yi) = a ( in ( /J ) . It is clear, by 
construction, that the inițial forms of the polynomials (4) and (5) with respect 
to w are exactly the hi and the Y d' .

This proves that inw (B) contains Hi. But Hi and H  have the same Hilbert 
function by construction, and H  and in W(B) have the same Hilbert function 
because they have the same inițial ideal if we refine w to a term order; for 
instance see Sturmfels [61, Prop. 1.8]. Here we consider Hilbert functions with 
respect to the original graded structure induced by the weights Vi. It follows 
that inw (B) =  Hi and we are done.
(b) That B is Cohen-Macaulay follows from Conca, Herzog, and Valla [27]. 
Since B is a Cohen-Macaulay positively graded K-algebra which is a domain, 
to prove that J  is the canonical module of B it suffices to show that J  is a 
maximal Cohen-Macaulay module whose Hilbert series satisfies the relation 
Hj{t) = ( — V)d tk Hg(t~1') for some integer k where d = dimB; see Bruns and 
Herzog [19, Theorem 4.4.5 and Corollary 4.4.6].

The relation Hj(t) = (—l')d tk HB (t~1) holds since by assumption the corre- 
sponding relation holds for the inițial objects and Hilbert series do not change 
by taking inițial terms. So it is enough to show that J  is a maximal Cohen- 
Macaulay module. But in (J) is a height 1 ideal since it is the canonical 
module (see Bruns and Herzog [19, Prop. 3.3.18]), and hence also J  has height 
1. Therefore it suffices to show that B /J  is a Cohen-Macaulay ring. But this 
follows from (a) since in (B)/in (J) is Cohen-Macaulay (it is even Gorenstein) 
[19, Prop. 3.3.18]. □

We also need the following lemma whose part (b) asserts that <f is a “lin­
ear” element for the functions 7j.
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104 6. Algebras o f minors (pfafRans)

Lemma 6.4.2 (a) One has ^i(X) = (m — i + l)(n  — Î  +  1).
(b) Let M  be any monomial in the indeterminates Xij. Then ^ (X M ) = 
^i{X) + y,(M) for every i =  1 , . . . ,  min (m, n).

Proof. Let M  be a monomial in the X i/s . We know that ^i{M} > fc if and 
only if M  E in T ( I i(X )^ ) . From equation (2) we deduce that

7,(M) = inf{£F (M) : F E F j .

Note that △, is a pure simplicial complex of dimension equal to the dimension 
of Ri(X), the classical determinantal ring defined by /i(X ), minus 1. It follows 
that £F {X} = (m — i + l)(n  — i + 1) for every facet F  of △,. In particular, 
^i{X) = (m -  i + l)(n  -  Î  + 1).

Since ^ ( N M )  > £F (N) + ?F (M) for all monomials N, M  and for every F, 
■we have ^i(M N) > îi(N ) + 7i(M). Conversely, let G be a facet of △, such 
that 7,(M) =  t G (M). Then t ^ X M }  = £G (X) + £G (M) = ^ (X )  +  ^(M ). 
Hence ^ (M N ) < îi(N )  + 7;(Af), too. □

Now assume for simplicity that m < n. Let us consider a product of minors 
p such that in T (^) = X  and 7I (M) =  7i(^)- Since we have already computed 
7I (A ) (see Lemma 6.4.2), we can determine the shape of p, which turns out 
to be l 2 , 22 , . .. ,(m  — l )2 , m(n ' m + 1\  In other words, p must be the product 
of 2 minors of size 1, 2 minors of size 2, ..., 2 minors of size m — 1 and 
n — m + 1 minors of size m. It is then not difficult to show that p is uniquely 
determined, the 1-minors are [m|l] and [l|n], the 2-minors are [m — l,m |l,2 ] 
and [1, 2|n — 1, n] and so on.

We have:

Theorem 6.4.3 (a) The canonical module of 71(11) is the ideal

J  = {F E S : pT \ F  in S  and yi(F) > 1 for i = 1, . . . ,t}.

(b) The canonical module of A t is the ideal

Ji = {F E Vt : pT \ F in S  and ^ (F )  > 1}.

Proof. By virtue of Lemma 6.4.1 it suffices to show that inT (J) and in T(Ji) are 
the canonical modules of in T(U(I( )) and in T(4 t ) respectively. A description 
of the canonical modules of in T(7£(7t )) and in T(At ) has been given in Section
6.3. Therefore it is enough to check that in T(J) is exactly the ideal described 
in 6.3.5 and in T(Ji) is the ideal described in 6.3.6. Note that we may write

J = pT {F  E S : ^i{F} > 1 — yi(pT) for i =  1 ,. . . ,  t}

and
= pT{F  E S  : 7 2 (F) > 1 -  72(M^)} A Vt .
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Furthermore, by virtue of Lemma 6.4.2,

cj(in T(^(Z t ))) = X T {F  e S  : ^ (F )  > 1 -  ^ (X T )  for i = 1 , . . . ,  t}

and
W(inT(A)) = X T {F  G S  : 72 (F) > 1 -  72 (*T)} n  Vt .

Since, by the very definition of p, we have in T(/z) =  X  and ^i(p) = ^(/V), it 
suffices to show that

m ,({ F  € S  : 7 [ (F) > 4 )  = {F e 3  : 7,(F) > j} .

But this has (essentially) been proved in Chapter 4. □

Now we determine the canonical class of 'F(It).

T heorem  6 .4 .4  The canonical class of H(It) is given by

cl(u(K(/( ))) = £ X 1 ( 2  -  (rn -  i + l)(n  -  z + 1) + t -  ^cl(P ,) = 

c l ( ^ ( / ( )) + E ‘= 1 (l -  height/i (X))cl(Pl )

Proof. Note that the second formula for u)('R.{It )) follows from the first, since 
height/,(X) = ( m - i  + l ) ( n - i  + l) and cl(ft(X)K(/()) = ^ J i - i  +  l J c l^ ) 
by Proposition 6.2.6.

We have seen that

W (K(I() ) - / IT { F G S : 7 1 (F) > I - 7 M )  for i = 1 , . . . ,  t}-

We can get rid of pT  and obtain a representation of u>(7?.(Zt )) as a fractional 
ideal, namely,

o A W M  =  {F G S : 7 t (F) > 1 -  ^ p T )  for z = 1 ,. . . ,  t}.

It follows that (j(P.(Zt )) = n ^ 1 - 7 ,^ T ^. As 'p(pT) = (m — i + l)(n -  i +  1) - 
(t +  1 — z), we are done. □

For A t the situation is slightly more difficult since p $ A t in general. 
Therefore we need an auxiliary lemma:

Lem ma 6.4.5 Let 6j be a j-minor of X  and q7 =  (Sj)S D A t . Then qj is a 
height 1 prime ideal of A t and cl(qj) = (j — t)cl(q).

Proof. Note that qt + i =  q by definition. Let v bea  product of minors. We say 
that v has tight shape if its degree is divisible by t and it has exactly deg(z/)/t 
factors. In other words, v has tight shape if ^ \(vT k } = 0 and 72(yTk } =  0
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where k =  deg(i/)/t. Let y be a product of minors with tight shape and 
k = deg(i/)/t. Note that

( i / ) S n A  =  ( I / T l ) A .

Now fix j  < t and set A = t - j  +  1; the product y = ^ i  has tight shape and 
hence q> Aq^/^ = (yT k )A t . Note that, for obvious reasons, qj does not contain 
q. It follows that q;  is a prime ideal of height 1 and that cl(qj) = (j — t)cl(q). 
Now take j  > t and set k = j  — t + 1; the product u = ^j^{-i has tight 
shape and hence, as above, we conclude that q;  is prime of height 1 and 
cl(qj = (t — j)cl(gf_i). Since we know already that cl(țt-i) = —cl(q), we are 
done. □

Now we can prove

Theorem 6.4.6 Then the canonical class of A t is given by

C1(W(J4()) = (mn — tm — tn)cl(q).

Proof. Assume that m < n. Set IV = (pT)S  A A t . We have seen that

aj(At) = IV A p.

Consequently

cl(w(A)) = cl(IV) + cl(p) = cl(IV) -  tcl(q).

Note that IV can be written as the intersection of (p)S A A t and (T)S  A A t . 
But the latter is the irrelevant maximal ideal of A t , whence IV = (p)S A At. 
Further (p)S A A t can be written as an intersection of ideals qj. Taking into 
consideration the shape of p and Lemma 6.4.5, we have

m —1
cl(IV) = ^  2(j -  t) + ( n -  m + l)(m  -  t))cl(q). 

;=i

Summing up, we get the desired result. □

As a corollary we have

Theorem 6.4.7 The ring A t is Gorenstein if and only if mn = t(rn + n).

Note that we assume 1 < t < min (m, n) and m ^  n if t = min (m, n) — 
1 in the theorem. We have observed in the introduction that A t is indeed 
Gorenstein (and even factorial) in these remaining cases.
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Remark 6.4.8 It is also possible to derive Theorem 6.4.6 from Theorem 6.4.4 
by a suitable generalization of [21, Lemma (8.10)].

(A) Let us consider a product of pfaffians ÎT such that in r (7r) = X  and y ^ )  =

Lemma 6.4.9 (a) yi(X) = (n — 2i + l)(n  -  2i + 2)/2.
(b) Let M  be any monomial in the Xij ’s. Then yi(XM ) = yim  + 
h a t^ M )  for every i = 1 ,. . . ,  [n/2].

Since we know yi(X), we can determine the shape of 7r. It turns out to 
be l 4 , 24 , . . . ,  ((n — 2)/2)4 , (n/2)1 for n even, and l 4 , 24 , . . . ,  ((n — 3)/2)4 , ((n — 
l)/2 )3 for n odd. In other words, 7r must be the product of 4 pfaffians of size 
2, 4 pfaffians of size 4, and so on. It is not difficult to see that ÎT is uniquely 
determined. Similar to part (G) we can prove

Theorem 6.4.10 (a) The canonical module of 1Z(It ) is the ideal

J  = {F e S : nT \ F in S  and yi(F) > 1 for i = 1 ,... ,t}.

(b) The canonical module of A t is the ideal

Jx = {F € Vt : -KT  \ F  in S  and y?(F) > 1}.

Now we determine the canonical class of H(It).

Theorem 6.4.11 The canonical class of 11(11) is given by

c\(u(1Z(It )f) = £ ‘=1 ( 2 -  ( n - 2 i +  l)(n  -  2z + 2)/2 + t -  ijclțP.) = 

cl(7t77(/t )) + £ ‘= 1 (1 -  height/i (X))cl(Pi )

Set q = ( f)S  D A t , where f  is an 2/ + 2-pfaffian of X .

Theorem 6.4.12 Then the canonical class of A t is given by

d(w(A)) =  ( Q  “  2^ n  “  ^ ) c l^ '

As a corollary we have:

Theorem 6.4.13 The ring A t is Gorenstein if and only if n = 4t.

Recall that we assume 2 < 2i < n — 2 in the theorem. We have noted in 
the introduction that A t is Gorenstein (and even factorial) in these remaining 
cases.
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